
CSc 460
Database Design

Fall 2014

Richard Snodgrass

Page 1 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, M. D. Soo, and C. E. Dyreson

CSc 460: Motivation

Why Use a Database?

CSc 460 Database Design

Fall 2014

Why Use a Database? M-2

Acknowledgements

• These slides were written by Richard T. Snodgrass (University

of Arizona) and Christian S. Jensen (Aalborg University).

• Michael Soo (amazon.com) provided some of the query

processing slides.

• Kristian Torp (Aalborg University) converted the slides from

Island Presents to Powerpoint.

• Curtis Dyreson (Washington State University) merged the slides

with those from Peter Stewart (Bond University).

• The motivational example was given by Gary Lindstrom and

Wei Tao (University of Utah).

Why Use a Database? M-3

Outline

• Why Use a Database?

• The Field

• Overview of the Course

Page 2 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, M. D. Soo, and C. E. Dyreson

CSc 460: Motivation

Why Use a Database? M-4

Prevalence of Databases

• Behind every successful website, there is a powerful

database.

• Examples:

 Amazon’s website

 American Airlinesz

 Dell’s ordering system

 UPS / FedEx tracking

 Wal-Mart’s inventory system

Why Use a Database? M-5

Data Management Example

• Scenario

 You are in a movie web startup.

 Your customers rent DVD copies of movies.

 Several copies of each movie.

• Needs

 Which movies have a customer rented?

 Are any disks overdue?

 When will a disk become available?

Why Use a Database? M-6

Solution: A File-based System

• Edit rented.txt file

 Customer: Jane Doe, Rented: Babe, Due: Jan. 19, 2010

• Advantages

 Text editors are easy to use

 Simple to insert a record

 Simple to delete a record

Page 3 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, M. D. Soo, and C. E. Dyreson

CSc 460: Motivation

Why Use a Database? M-7

Complication: Queries

• Does not address needs

Query: What movies has Joe Jenkins rented?

Execute (not quite right): Search for ‘Joe Jenkins’.

Execute: Search for
^\s+Customer:\s*Joe\s+Jenkins\s*,\s+Rented:

Query: Are any disks overdue?

Execute: ???

• Requirements

 Robust, sophisticated query language

 Clear separation between data organization (schema) and data

DBMS Concepts

Schema

DML

SQL

Why Use a Database? M-8

Complication: Integrity

• Lacks data integrity, consistency

 Clerk misspells value/field
Customer: Jane Doek, Rented: Eraserhead, Deu: Jan. 19, 2010

 Inputs improper value, same value differently
Customer: Jane Doe, Rented: The Eraserhead, Due: Feb. 29, 2010

 Forgets/adds/reorders field
Terms: weekly special Due: Jan. 19, 2010, Rented: Eraserhead

• Requirements

 Enforce constraints to permit only valid information to be input.

 DBMS Concepts

Integrity constraints

Types

Why Use a Database? M-9

Complication: Update

• Add/delete/update fields in every record

 Record store location.
Customer: Jane Doe, Rented: Babe, Due: Jan. 19, 2010, Store: Robina

 Modify customer to first and surname.
First: Jane, Surname: Doe, Rented: Eraserhead, Due: Jan. 19, 2010

• Add/delete/update new information collections

 customer.txt file to record information

Customer: Jane Doe, Phone: 557-3344

• Requirements

 Ability to manipulate the way data is organized.

DBMS Concepts

DDL

Page 4 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, M. D. Soo, and C. E. Dyreson

CSc 460: Motivation

Why Use a Database? M-10

Complication: Multiple Users

• Two clerks edit rented.txt file at the same time.

1) Ben starts to edit rented.txt, reads it into memory.

2) Sarah starts to edit rented.txt.

3) Ben adds a record.

4) Ben saves rented.txt to disk.

5) Sarah saves rented.txt to disk.

Ben’s added record disappears!

• Requirements

 Must support multiple readers and writers.

 Updates to data must (appear to) occur in serial order.

DBMS Concepts

Serializability

Concurrency control

Why Use a Database? M-11

Complication: Crashes

• Crash during update may lead to inconsistent state.

 Ben makes 250 of 500 edits to change Jane Doe to her preferred name Jan

Doe.

 Before he saves it, Windows crashes!

• Requirements

 Must update on all-or-none basis.

 Implemented by commit or rollback if necessary.

DBMS Concepts

Transactions

Commit

Rollback

Recovery

Why Use a Database? M-12

Complication: Data in Separate Files

• Need

 Want to advise Austin Power’s fans about new Austin Power’s movie.

• Method

 customer.txt contains addresses of customers.

 Must merge with rented.txt to create mailing list.

• Problems

 Text editors incapable of such a merge (have to write a program)

 Several Joe Jenkins

 No information on some customers!?

• Requirements

 Uniquely identify each customer.

 Make sure we have information on customers that rent discs.

DBMS Concepts

Joins

Keys

Foreign keys

Referential integrity

Page 5 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, M. D. Soo, and C. E. Dyreson

CSc 460: Motivation

Why Use a Database? M-13

Complication: Security

• Customers want to know how many times a movie has been

rented.

 Provide access to rented.txt, but not to customer field. How do I do

that in an editor?

• Underage clerks should not see history of R-rated rentals.

 Keep two lists of rentals?

• Requirements

 Ability to control who has access to what information.

DBMS Concepts

Security

Views

Why Use a Database? M-14

Complication: Efficiency

• Your customer list grows virally.

 rented.txt file gets huge (gigabytes of data).

 Slow to edit.

 Slow to query for customer information.

• Requirements

 New data structures to improve query performance.

 System automatically modifies queries to improve speed.

 Ability of system to scale to handle huge datasets.

DBMS Concepts

Indexes

Query optimization

Database tuning

Why Use a Database? M-15

Complication: New Needs

• Your customer list grows virally.

 What pairs of movies are often rented together?

Calculate probability of movie combinations.

 Do we need more copies of the Austin Powers movie anywhere?

Plot rental history of Austin Powers by city.

• Requirements

 Collect and analyse summary data.

 Use computer to mine for interesting trends.

 Support access to data by sophisticated programs.

DBMS Concepts

Data warehouses

Data mining

Database API

Page 6 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, M. D. Soo, and C. E. Dyreson

CSc 460: Motivation

Why Use a Database? M-16

Limitations of File-based Systems

• Program must implement

 Security

 Concurrency control

 Support for schema reorganization

 Performance enhancing data structures, e.g., indexes

• Observation

 Many applications need these services.

• Solution

 Build and sell a software system to provide services!

Why Use a Database? M-17

Outline

• Why Use a Database?

• The Field

• Overview of the Course

Why Use a Database? M-18

Major Players in the Field

• Oracle

 108,000 employees

 $38.2B (US dollars) annual revenue (FY 2014)

 34% market share

• Microsoft

 Produces SQLServer

 89,000 employees

$86.7B annual revenue (includes Office, Windows, etc.)

• IBM

 Produces DB2

 105,000 employees in US, 75,000 employees in India

 $99.8B annual revenue

Page 7 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, M. D. Soo, and C. E. Dyreson

CSc 460: Motivation

19

SVL
DB2 UDB for z/OS & OS/390
IMS
Business Intelligence
Content Management
DB2 Everyplace
Red Brick
Icing

Traditional AD Languages

Boeblingen
DB2 Text Extenders
SAP/R3 Enablement
Intelligent Miner for Data
Intelligent Miner for Text

Somers

Hawthorne
Advanced Technology

Almaden
Advanced Technology

Menlo Park & Oakland
IDS
XPS
JDBC
Visionary
Cloudscape
Datablades
Object Connect & Translator
Content Management

India
DB2 UDB Service
Business Intelligence
IDS

Austin
GBIS

Portland
XPS & DB2

Lenexa
IDS

Boulder & Denver
Content Management
U2

Datablades

Boca Raton & Miami
EMMS
LA Informix Support

Rochester
DB2 UDB for AS/400

Toronto
DB2 UDB for UNIX,

Windows, & OS/2

IBM Information Management Teams

Beijing
Information Integration
DB2 for zOS
Content Management

 DB2 and IMS tools

Las Vegas
Entity Analytics

Over 6000 employees worldwide

Yamato
High Speed Inverted Index Search
Business Intelligence
Content Management

Hursley
Enterprise Master Data

Solutions

By C. Mohan, IBM Fellow and IBM India Chief Scientist,

Why Use a Database? M-20

The Field

• Professional Publications
 ACM Transactions on Database Systems (TODS)

 quarterly, 700 pages per year

 IEEE Transactions on Knowledge and Data Engineering (TKDE)

 bimonthly, 1000 pages a year

 The VLDB Journal (VLDBJ)

 quarterly, 450 pages a year

 Information Systems (Info Sys)

 bimonthly, 600 pages a year

 Numerous other journals

• Unrefereed Technical Publications
 ACM SIGMOD Record

 quarterly, 250 pages a year

 IEEE Data Engineering Bulletin

 quarterly, 250 pages a year

Why Use a Database? M-21

The Field, cont.

• Conferences
 ACM SIGMOD International Conference on Management of Data

(SIGMOD)

 late May or early June, 500 pages a year

 ACM Principles of Database Systems (PODS)

 In conjunction with SIGMOD, 300 pages a year

 International Conference on Very Large Data Bases (VLDB)

 Mid-September, 500 pages a year

 IEEE International Conference on Data Engineering (ICDE)

 February, 600 pages a year

 Extending Data Base Technology (EDBT), International Conference on

Database Theory (ICDT)

 alternate years (March and January), 400 pages a year

 8-10 specialized conferences a year: 300 8 = 2500 pages a year

• 8,000 pages per year of research papers

Page 8 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, M. D. Soo, and C. E. Dyreson

CSc 460: Motivation

Why Use a Database? M-22

The Field, cont.

• Other
 Technical reports from university and industrial research labs

 Trade rags: Data Base Newsletter, Database Review, InfoDB, etc.: thousands

of pages a year

 Perhaps 100 database textbooks

 Several hundred database user guidebooks

Why Use a Database? M-23

Outline

• Why Use a Database?

• The Field

• Overview of the Course

Why Use a Database? M-24

The Course

• Motivation (M)

• The Relational Model (R)
 Definition

 Integrity constraints

• Relational Query Languages (E)
 Relational algebra

 Relational calculi: domain and tuple

• Microsoft Access (A)

 DDL

 DML

Page 9 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, M. D. Soo, and C. E. Dyreson

CSc 460: Motivation

Why Use a Database? M-25

The Course, cont.

• SQL DDL and DML (S)
 Schema definition

 Querying

 Modifications

 Views

 Embedded SQL

 Transaction management

• Conceptual Design (C)

 Basic Entity-Relationship Model

 Constraints

 Specialization and generalization

 View integration

 Mapping an ER schema to tables

Why Use a Database? M-26

The Course, cont.

• Web/Database Connections (W)

 HTTP

 Static Database Access

 Dynamic Database Access

• Application Design and Implementation (T)

 Direct database interfaces

 Indirect interfaces

 Web interfaces

Why Use a Database? M-27

The Course, cont.

• Logical Design (L)

 Properties of a good design

 Functional dependencies and keys

 Normal forms: 3NF, BCNF

 Decomposition algorithms

• Physical Data Organization (P)

 Relational structures: heap, sorted, compressed

 Indexes: primary and secondary, B-trees

• The Future (F)

 Data models

 Query languages

 Next-generation database technologies

Page 10 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, M. D. Soo, and C. E. Dyreson

CSc 460: Motivation

Why Use a Database? M-28

Course Concepts

Entity-Relationship

Model

Extended

Entity-Relationship
Model

Relational

Model

Relational

Algebra

Microsoft

Access

Logical

Design

Physical

Design

Dependency

Theory

Storage

Structures

SQL

JDBC

Java

Servlets

Web

JSP
Oracle

Tuple

Relational
Calculus

Domain

Relational
Calculus

Your Intellectual Journey

M-29

Facts

Data

Information

Knowledge

Wisdom

Why Use a Database?

An Example

M-30

Facts

Data

Information

Knowledge

Wisdom

Bob started job training on July 1, 2010.

"Bob", "Job Training", "July 1, 2010"

("14735","377", "07-01-2010")

198 (79%) of clients are currently in job training.

Clients are in job training for an average of seven months.

Job training, if started within two months, and if monitored

closely, can be effective for a majority of people on welfare.

Table with foreign key to Client table,

foreign key to Task table, and date.

Why Use a Database?

Page 11 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, M. D. Soo, and C. E. Dyreson

CSc 460: Motivation

Relationship to Other Courses

M-31

Facts

Data

Information

Knowledge

Wisdom

Prior

Courses

460

Why Use a Database?

Page 1 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: The Relational Model

The Relational Model

CSc 460 Database Systems

Fall 2014

The Relational Model R-2

Acknowledgements

• These slides were written by Richard T. Snodgrass

(University of Arizona) and Christian S. Jensen

(Aalborg University).

• Kristian Torp (Aalborg University) converted the slides

from island presents to Powerpoint.

• Curtis E. Dyreson (Washington State University)

modified the slides.

The Relational Model R-3

Overview

• The Relational Model (RM)

 Relations

 Properties of relations

• Integrity Constraints

Page 2 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: The Relational Model

The Relational Model R-4

Course Concepts

Relational

Model

The Relational Model R-5

Sets

Definition: A set is an unordered collection of distinct

objects.

 Examples

{3, 4, a} is a set

{a, 3, 4} is the same set as {3, 4, a}

{4, 4} is not a set

• Set operations include

 Intersection, e.g., {3, 4, a} {b, 4} = {4}

 Union, e.g., {3, 4, a} {b, 4} = {3, 4, a, b}

 Difference, e.g., {3, 4, a} - {b, 4} = {3, a}

The Relational Model R-6

Domains and Attributes

Definition: A domain is a set of values of some “type”.

 Positive integers = {1, 2, 3, 4, …}

 Alphanumeric characters = {‘a’, ‘b’, …, ‘Z’, ‘0’, …, ‘9’}

• A common database restriction: Domains are atomic.

 The following programming types are atomic domains.

integer, char, float, varchar

 Structs and records are associated with a composite domain.
struct { street: char[], city: char[], state: char[2] } address

Definition: An attribute is the name of a domain.

Page 3 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: The Relational Model

The Relational Model R-7

Relations

Definition: Given sets A1, A2, ... , An a relation r is a

subset of their Cartesian product.

 r A1 A2 ... An

• r is a set of n-tuples (a1, a2, ... , an) where ai Ai

Definition: R(A1, A2, ..., An) is the schema of relation r.

 A1, A2, ... , An are domains; their names are attributes.

 R is the name of the relation.

• Notation: r(R) denotes that r is a relation on the

relation schema R.

The Relational Model R-8

Edgar F. (Ted) Codd (1923–2003)

• Codd, E.F., “A Relational Model of Data for Large

Shared Data Banks.” Communications of the ACM 13

(6): 377–387, 1970.

• ACM Turing Award winner

The Relational Model R-9

Example, The < Relation

• Let O be the domain {1, 3} and E be {0, 2}.

 O E = {(1,0), (1,2), (3,0), (3,2)}

• <(O,E) is the schema, O, E are attributes, {1,3} and

{0,2} are domains

 O < E = {(1,2)} O E

1

3

0

2

1

3

0

2

Page 4 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: The Relational Model

The Relational Model R-10

Relations as Tables

• Mathematical relations can be depicted as tables

(approx.)

• (O,E) where O = {1,3} and E = {0,2}

• <(O,E)

 O E

< O E

1

3

0

2

1

3

0

2

3 2

3 0

1 2

1 0

1 2

The Relational Model R-11

Tuples

Definition: An element t of a relation r is called a tuple.

• We refer to component values of a tuple t by t[Ai] = vi

(the value of attribute Ai for tuple t).

 Alternatively, use ‘dot’ notation, e.g., t.Ai is the ith attribute

of tuple t

• t[Ai , ... , Ak] refers to the subtuple of t containing the

values of attributes Ai , ... , Ak respectively.

• Table metaphor

 Tuple is a row

 Attribute is a column

The Relational Model R-12

Characteristics of Relations

• Tuples in a relation are unordered.

• Example: The following two relations have the same

information content.

 Name Age Name Age

Pam 4

Pat 1

Sue 3

Fred 2

Pat 1

Sue 3

Fred 2

Pam 4

Page 5 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: The Relational Model

The Relational Model R-13

Characteristics of Relations (cont.)

• Attributes in a tuple/relation are ordered.

 But, we can change the order at will (to be shown later).

 Example: The following relations do not have the same

information.

Pat 1

Fred 2

Sue 3

Pam 4

 Name Age Age Name

Pat 1

Fred 2

Sue 3

Pam 4

The Relational Model R-14

Characteristics of Relations (cont.)

• Values in a tuple are atomic (indivisible).

• A value cannot be a structure, record, or relation

Example: All atomic values (string or integer).

Pat 1

Fred 2

 Name Age

Example: The following is not a relation, as Name is not

atomic.

 Name Age

Joe Doe

Sue Doe

1

2
First Last

First Last

The Relational Model R-15

Ord CID Date Salesperson

102 42 110207 Johnson

103 39 110211 Strong

104 24 110228 Boggs

105 42 110303 Strong

107 34 110308 West

108 46 110308 West

110 24 110312 Boggs

111 21 110318 Strong

112 29 110320 Clark

Tuples (or records, rows)
[Cardinality is # of them]

Degree or arity

Degree and Cardinality

Page 6 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: The Relational Model

The Relational Model R-16

Overview

• The Relational Model (RM)

• Integrity Constraints

 Overview

 Key constraints

 Super, candidate, and primary keys

 Foreign keys and referential integrity

 Other constraints

The Relational Model R-17

All states

Integrity Constraints
• An integrity constraint is a predicate that is required to be true

of every possible instance of the database schema.

• Purpose: To keep the database in a “good” state.
 A good state is one that is consistent with the modelled reality.

• How: Check to see if an update will move to a “bad” state.

Good states

 state update

 state

update
X

 state

The Relational Model R-19

Integrity Constraints, cont.

• Are specified at the schema level

 A constraint must be true for all possible instances of a
schema.

 Critical notion: possible instances

• Some can be specified (conceptually) with relational
algebra.

• In commercial databases, specified with SQL
(typically).

Page 7 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: The Relational Model

The Relational Model R-20

Enforcement of Integrity Constraints

• Evaluate on update (insert/delete/modification)

• Cost of enforcement

 Only allow specification of ICs that can be tested efficiently.

 How many to evaluate?

The Relational Model R-21

Remedy for Violation

• When an integrity violation occurs either

 Cancel the operation that causes the violation.

 Perform the operation but inform the user of the violation.

 Trigger additional updates so the violation is corrected.

 Execute a user-specified error-correction routine.

• Specified for each individual constraint

The Relational Model R-23

Key Constraints

Definition: A superkey of R is a set of attributes K of R

such that no two tuples in any valid relation instance

r(R) will have the same value for K.

 For any distinct tuples t1 and t2 r(R), t1 t2 t1[K] t2[K]

Definition: A candidate key of R is a minimal superkey;

that is, a superkey K such that removal of any attribute

from K results in a set of attributes that is not a

superkey.

Definition: A primary key is a specified candidate key.

Page 8 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: The Relational Model

The Relational Model R-24

Example
• Consider two relation schemas (with no keys specified).

 Customer (ID, Name)

 Reserved (CustomerID, FilmID, ResDate)

• Assumption: No two customers have the same ID
 Superkeys of Customer

{ID}

{ID, Name}

 Candidate key of Customer (and also the primary key, since only one)

{ID}

• Assumption: Customer can reserve many films over several days.
 The superkey of Reserved

{CustomerID, FilmID, ResDate}

 One candidate key (see above), primary key (see above)

The Relational Model R-25

Keys, Fact and Fiction

• A key is often more than a single attribute.

 Some DB products impose a single-attribute key restriction

 Smaller keys are sometimes more efficient.

 This optimization detracts from semantics.

• An attribute in a key can be of any type.

 Some DB products restrict keys to integer or auto-number types.

 Easy for the software to check and maintain

 Detracts from semantics

• Choosing a key is difficult.

 Schema may change over time.

 Assume SSN is a good key, new law makes using SSN illegal.

 Converting after a “wrong choice” can be costly.

 Keys are “shared” as foreign keys in other relations.

The Relational Model R-26

Entity Integrity

• The primary key attributes P = {a1, …, am} of each

relation schema R in S cannot have null values in any

tuple of r(R).

 t[P] Null for any tuple t r(R)

 Alternatively, k 1km (tr(R) t[ak]Null)

• This is because primary key values are used to identify

individual tuples.

Page 9 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: The Relational Model

The Relational Model R-27

Domain Constraints

• This is similar to programming languages
1. Strong typing or type-by-name in programming languages.

2. Most DBMSs have only a restricted selection of simple, predefined types

available.

 Each domain creates a separate type.

• Consider these sample relation schemas.
Film (ID, Title)

Customer (ID, Name)

• It is not meaningful to compare Film and Customer

IDs.
 Create FilmID domain of type integer

 Create CustomerID domain of type integer

 DBMS does not allow IDs of domain FilmIDs to be compared with IDs

of domain CustomerIDs.

The Relational Model R-28

Referential Integrity

• Referential integrity is the "glue" that keeps the
database together, ensuring the consistency of foreign
keys.

 A foreign key points to or references some relation

 A foreign key is a key in the other relation

 Referential integrity says that the information that is pointed
to must exist.

• Example:If a CustomerID, e.g., 123456, is associated
with a FilmID, e.g., 100001, in a tuple in the Reserved
relation, a customer with CustomerID 123456 must
exist in the Customer relation, and a film with FilmID
100001 must exist in the Film relation.

The Relational Model R-29

Referential Integrity, Definition

Definition: Let r1 and r2 be instances of schemas R1 and R2,

let K be a candidate key for R1, and let be a subset of R2

that is compatible with K. Then, is a foreign key for R2

if every value for in a tuple in r2 also appears as a value

of K in a tuple in r1 .

r1(R1) r2(R2) t1r1 t2r2 (r2[]Null r2[]= r1[K])

• Constraints of this type are termed referential integrity

constraints or subset constraints.

Page 10 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: The Relational Model

The Relational Model R-30

Enforcement of Referential Integrity

• Consider the constraint that every foreign key value in

r2 is in the referenced relation r1 .

• Insertion into r2:

 Check that a corresponding tuple exists in r1 .

• Deletion from r1:

 Check that no matching tuple existed in r2.

• Updates of tuples in r2 are treated as insertions above.

• Updates of tuples in r1 are treated as deletions above.

• Note that cascading deletes are possible.

The Relational Model R-31

Assertions

• Assertions are more general integrity constraints,

expressed directly as predicates which must always be

satisfied.

• Think of these as sanity checks.

• Examples

 No DVD rents for less than $0.00.

 The spoken and subtitled languages for a foreign film must

be different.

 Reservations must have a date of today.

 No DVD is being rented by more than one customer.

Page 1 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

CSc 460 Database Systems

Fall 2014

Relational Query Languages

Relational Query Languages E-2

Acknowledgements

• These slides were written by Richard T. Snodgrass (University

of Arizona) and Christian S. Jensen (Aalborg University).

• Kristian Torp (Aalborg University) converted the slides from

island presents to Powerpoint.

• Curtis Dyreson (Washington State University) modified the

slides.

• Rick converted to Jun Yang’s dbsym font, using George

Necula’s TexPoint package.

• Lester McCann’s article on relational division was helpful: “On

Making Relational Division Comprehensible,” in Proceedings of

the 33rd ASEE/IEEE Frontiers in Education Conference, pp.

F2C-6 to F2C-11, Boulder, CO, November, 2003.

Relational Query Languages E-3

Overview

Relational Algebra (RA)

 Operators
 Complete set – projection, selection, Cartesian product, difference,

union

 Convenient – intersection, theta join, equijoin, natural join, semijoin,
antijoin, division

 Example queries

 Limitations

 Extended Relational Algebra Operators

• Tuple Relational Calculus (TRC)

• Domain Relational Calculus (DRC)

Page 2 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-4

Course Concepts

Relational

Model

Relational

Algebra

Tuple

Relational

Calculus

Domain

Relational

Calculus

Algebra

• An algebra is a mathematical object with

 A set of objects

 A set of operations, each of which takes one or more objects

and evaluates to an object

• Some algebras are closed: result of each operation on

any possible input objects is a valid object.

Relational Query Languages E-5

Relational Query Languages E-6

Relational Algebra

• Five primary operators (“complete” or “query complete”)

 Selection: s

 Projection: p

 Union:

 Difference: –

 Cartesian Product:

• Convenient derived operators

 Intersection:

 Theta join n, equijoin n= , and natural join n

 Semijoins: " and #

 Antijoin:

 Relational division:

Page 3 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-7

operation2 ()

RA Operations Produce Relations

Name Age
Tom 4
Jane 10
Mel 9

Name
Jane
Mel

operation2

Name Age
Jane 10
Mel 9

operation1

 operation1 (r) Notation:

Unary operators are prefix; binary operators are infix.

Relational Query Languages E-8

Selection, Informal Description

• Choose a row or rows, choice is based on a condition

or predicate

• Result has same schema.

• Remember: rows are unordered so cannot specify row

number, e.g., 2nd row or 4th row.

Name Age
Tom 4
Jane 10
Mel 9

Select rows from Friends such that Age > 8: sAge>8(Friends) .

Name Age
Jane 10
Mel 9

Friends
Result

Relational Query Languages E-9

Selection, Formal Description

sP(r) = {t | t r P(t) }
• P is a formula in propositional calculus, dealing with terms of

the form:

 attribute (or constant) = attribute (or constant)

 attribute attribute

 attribute < attribute

 attribute attribute

 attribute attribute

 attribute > attribute

 term term (Note: is AND)

 term term (Note: is OR)

 (term) (Note: is NOT)

Page 4 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-10

Selection Example

A B C

1 y

3 x

2 y

r:

sB = y A > 1(r):

A B C

2 y

Relational Query Languages E-11

Projection, Informal Description

• Project column(s), choice is based on column name

• Result usually has different schema, fewer columns.

• Remember: column are named, so can use name

Name Age
Tom 4
Jane 10
Mel 9

Project the Name column from Friends: pName(Friends) .

Name
Tom
Jane
Mel

Friends Result

Relational Query Languages E-12

Projection, Formal Description

pX(r) = {t[X] | t r }
• Let X = { , , ... , }

• The result is a relation of n columns obtained by
keeping the columns that are specified.

A B C

1 y

3 x

2 y

pA,C (r): pB (r): A C

1

3

2

B

y

x

r:

Page 5 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-13

Switching Columns

Mel 1

Eric 2

Jane 3

Tom 4

 Name Age

 Age Name

Mel 1

Eric 2

Jane 3

Tom 4

• Assume r is the following

pAge,Name (r) =

• To switch columns use projection

Relational Query Languages E-14

Union, Informal Description

• Put all tuples in two relations into one, new relation

• Remember: relation has unique elements, must

eliminate duplicates

Name Age

Jane 10

Perform Union of Friends and Others: Friends Others .

Name Age
Tom 4
Jane 10
Mel 9

Name Age

Eric 8

Tom 4
Jane 10
Mel 9
Eric 8

Friends

Result

Others

Relational Query Languages E-15

Union, Formal Description

r s = {t | t r t s}
• r and s must be union-compatible:

 r and s have the same arity.

 The attributes of r and s are over the same domains.

A B C

1 y

3 x

2 y

r:
A B C

4 w ζ

3 x

s:

A B C

1 y

3 x

2 y

4 w ζ

r s :

Page 6 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-16

Difference, Informal Description

• Remove same tuples from a relation

• Schemas must be union compatible.

 Name Age

Jane 10

Perform Friends minus Others: Friends – Others.

Name Age
Tom 4
Jane 10
Mel 9

Name Age

Eric 8

Mel 9
Tom 4

Friends Result

Others

Relational Query Languages E-17

Difference, Formal Description

r – s = {t | t r (t s)}

A B C

1 y

3 x

2 y

r:
A B C

4 w ζ

3 x

s:

A B C

1 y

2 y

r – s :

Relational Query Languages E-18

Cartesian Product, Informal Description

• All possible combinations of tuples from two relations

• Schema of result is combined schema of both operands

Alias Size

grr 10

Perform Cartesian Product of Friends and Others: Friends Others .

Name Age
Tom 4
Jane 10
Mel 9

Name Age

bob 8

Alias Size

grr 10 Mel 9

grr 10 Tom 4
Tom 4 bob 8

bob 8 Jane 10

Mel 9 bob 8
grr 10 Jane 10

Friends Result

Others

Page 7 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-19

Cartesian Product

r s = {t q | t r q s}

• The schema of the resulting relation is R S

A B C

1 y

3 x

2 y

r:
D A

“Tom” 1

“Eric” 2

s:

A B C D A

1 y “Tom” 1

3 x “Tom” 1

2 y “Tom” 1

1 y “Eric” 2

3 x “Eric” 2

2 y “Eric” 2

r s :

Relational Query Languages E-20

Overview

Relational Algebra (RA)

 Operators
 Complete set – projection, selection, Cartesian product, difference,

union

 Convenient – intersection, theta join, equijoin, natural join, semijoin,
division

 Limitations

 Extended Relational Algebra Operators

• Tuple Relational Calculus (TRC)

• Domain Relational Calculus (DRC)

Relational Query Languages E-21

Jane 10

Intersection, Informal Description

• Keep same tuples from two relations

• Schema must be the same for all three

Name Age

Jane 10

Perform Intersection of Friends and Others: Friends Others .

Name Age
Tom 4
Jane 10
Mel 9

Name Age

Eric 8

Friends

Result

Others

Page 8 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-22

Intersection, Formal Description

r s = {t | t r t s} = r – (r – s)

A B C

1 y

3 x

2 y

r:
A B C

4 w ζ

3 x

s:

A B C

3 x r s :

Relational Query Languages E-23

Joins

• Joins are Cartesian products coupled with selections
and projections.

• Theta join

 r ! s = s (r s)

 Example: r !A < E s = sA < E (r s)

• Equijoin

 A theta join in which is an equality predicate

 Example: r !A = E s = sA = E (r s)

• Natural join !

• Semijoins

 Left semijoin "

 Right semijoin #

• Antijoin "

Relational Query Languages E-24

Theta Join, Informal Description

• Try all possible combinations of tuples from two
relations, keep only those that match a condition

• Schema of result is combined schema of both operands

Alias Size

Eric 10

Perform theta join between Friends and Others on Age < Size.

Name Age
Tom 4
Jane 10
Mel 9

Name Age

Bob 8

Alias Size

Eric 10 Mel 9
Eric 10 Tom 4

Tom 4 Bob 8

Friends Result

Others

Page 9 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-25

Theta Join, Formal Description

r ! s = s (r s)

A B C

1 y

0 x

2 y

r: D E

“Tom” 3

“Eric” 1

s:

A B C D E

1 y “Tom” 3

0 x “Tom” 3

0 x “Eric” 1

2 y “Tom” 3

r n A < E s :

• Equijoin

 A theta join in which is an equality predicate

 Example: r !A=E s

Relational Query Languages E-26

Natural Join, Informal Description

• Do equi-join, then eliminate duplicate columns

• Schema of result is combined schema of both operands

Alias Age

Eric 10

Perform natural join of Friends and Others: Friends ! Others.

Name Age
Tom 4
Jane 10
Mel 9

Name Age

Bob 8

Alias Age
grr 10 Jane 10

Friends

Result

Others

Relational Query Languages E-27

Natural Join, Formal Description

r ! s= pRS (r != s)
• Schema of result is RS

• Let t be a tuple in the result.

 t[R] has the same value as a tuple tR r.

 t[S] has the same value as a tuple ts s.

 Predicate is equality, on like-named attributes.

• Note: notation in textbook is different.

A B C

1 y

3 x

2 y

r: s: D B

“Tom” y

“Eric” x

A B C D

1 y “Tom”

3 x “Eric”

2 y “Tom”

r ! s :

Page 10 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-28

Movie Web Startup Schema (subset)

• Customer (CustomerID, Name, Street, City, State, Zipcode)

• Film (FilmID, Title, RentalPrice, Kind)

• Reserved (CustomerID, FilmID, ResDate)

Relational Query Languages E-29

• List information for films with a rental price over $4.

• List the titles of films with a rental price over $4.

Movie Web Queries

sRentalPrice > 4(Film)

pTitle (sRentalPrice > 4(Film))

Relational Query Languages E-30

Movie Web Queries, cont.

• List outrageously priced films (over $4 or under $1).

• List the ID numbers of the films that are expensive and

have been reserved.

pTitle (sRentalPrice > 4(Film) sRentalPrice < 1(Film))

pFilmId (sRentalPrice > 4(Film)) pFilmId(Reserved)

pTitle (sRentalPrice > 4 RentalPrice < 1(Film))

pFilmId (sRentalPrice > 4(Film)) ! pFilmId(Reserved)

Page 11 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-31

Movie Web Queries, cont.

• List the IDs of the expensive films that have not been

reserved.

pFilmId (sRentalPrice > 4(Film)) – pFilmId(Reserved)

Relational Query Languages E-32

Movie Web Queries, cont.

• List the titles of all reserved films.

• List the customers who have reserved a film.

pTitle (sFilm.FilmID = Reserved.FilmID(Film Reserved))

pTitle (Film ! Reserved)

pName (sCustomer.CustomerID = Reserved.CustomerID

(Customer Reserved))

pName (Customer ! Reserved)

Relational Query Languages E-33

Movie Web Queries, cont.

• List the customers who have reserved expensive films.

• List the streets of customers who have reserved foreign

 films.

pName (sRentalPrice > 4 (Customer ! Reserved ! Film))

pName (Customer ! sRentalPrice > 4 (Reserved ! Film))

pName (Customer ! Reserved ! sRentalPrice > 4 (Film))

pStreet (Customer ! Reserved ! sKind = “F” (Film))

Page 12 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-34

Renaming Operator

• Find the film(s) with the highest rental price.

• We need a renaming operator: rName

• This operator doesn’t really do anything, other than

make it easier to do self-joins.

• Alternative formulation of the query: Find the film(s)

with a rental price for which no other rental price is

higher.

pTitle(Film) –
 pF2.Title (Film ! Film.RentalPrice > F2.RentalPrice rF2(Film))

Relational Query Languages E-35

Semijoins

r " s = pR (r ! s)
• The result has the same schema as the left-hand

argument, r.

• Right semijoin: r # s = pS (r ! s)

A B C

1 y

3 x

2 y

r: s: D B

“Tom” y

A B C

1 y

2 y

r " s :

Relational Query Languages E-36

• Assume that relation r is very large, and resides in a
database in Los Angeles.

• Relation s is small, and resides in a database in New
York City.

• Application desires r ! s, in New York City.

• Sending all of r from Los Angeles to New York City
would be very expensive.

• Alternative processing strategy:

 New York City sends pRS (s) to Los Angeles.

 Los Angeles computes r " s, and sends the result to New
York City. This table is significantly smaller than r.

 New York City computes (r " s) ! s = r ! s

Semijoins in Distributed Query Processing

Page 13 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Antijoin

• r s = r – (r " s)

• The result has the same schema as the left-hand
argument, r.

• Sometimes called the anti-semijoin.

Relational Query Languages E-37

A B C

1 y

3 x

2 y

r:

s: D B

“Tom” y

A B C

3 x

r s:

Relational Query Languages E-38

Relational Division

r s = { t | u s (t u r)}

A B C

1 y

3 x

2 y

1 z

r: s: B

y

z

A C

1
r s :

Relational Query Languages E-39

Intuition

Name Age
Tom 4
Jane 10
Mel 9

Alias Size

grr 10
bob 8

Friends: Others:

Prod = Friends × Others:

Name Age Alias Size

Tom 4 bob 8

Tom 4 grr 10

Jane 10 bob 8

Jane 10 grr 10

Mel 9 bob 8

Mel 9 grr 10

Prod ÷ Friends:

Alias Size

grr 10
bob 8

Prod ÷ Others:

Name Age
Tom 4
Jane 10
Mel 9

Page 14 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-40

Relational Division

• Let r and s be relations on schemes R and S

respectively, where

 R = (A1, A2, ..., An, B1, B2, ..., Bn,)

 S = (B1, B2, ..., Bn,)

• The result of r divided by s is a relation on scheme

R S = (A1, A2, ..., An)

• (r s) × s r

Relational Query Languages E-41

Movie Web Queries, cont.

• List the customers who have reserved all the foreign

films.

 Identify the foreign films.

 Identify those customers who have reserved all foreign films.

 Now figure out the names of those customers.

pFilmID (sKind = “F” (Film))

pCustomerID,FilmID (Reserved) pFilmID (sKind = “F” (Film))

pName (Customer !

 (pCustomerID,FilmID (Reserved)

 pFilmID (sKind = “F” (Film))))

Hints

1. Make right argument one column of the stuff after

“all.”

2. Make left argument two columns, one the stuff before

“all” and the other the column above.

3. Both arguments should be IDs of something.

Relational Query Languages E-42

Page 15 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Customers Who Have Reserved All the Foreign Films

• R = { CustomerID, FilmID } “Reservations”

• r = pCustomerID,FilmID (Reserved)

• S = { FilmID } “Foreign Films”

• s = pFilmID (sKind = “F” (Film))))

• Shared columns: B = { FilmID}

• Extra columns in R: A = { CustomerID }

• Reservations Foreigh Films is what?
Relational Query Languages E-43

CustomerID FilmID

12345 1

12345 2

12345 7

24680 1

24680 19

36925 1

36925 19

36925 7

FilmID

1

7

Relational Query Languages E-44

Relational Division

• Let r and s be relations on schemes R and S

respectively, where

 R = (A1, A2, ..., An, B1, B2, ..., Bn,)

 S = (B1, B2, ..., Bn,)

• The result of r divided by s is a relation on scheme

R S = (A1, A2, ..., An)

• Can be done with just the five basic operators (!):

 r s = pR – S (r) – pR – S ((pR – S (r) s) – r)

Division Example, cont.

1. pR – S (r):

(the A columns of r)

2. pR – S (r) s:

 (This is the maximum

possible result.)

3. (pR – S (r) s) – r:

(the possible tuples that

aren’t in r, termed the

victims)

Relational Query Languages E-45

CustomerID

12345

24680

36925

CustomerID FilmID

12345 1

12345 7

24680 1

24680 7

36925 1

36925 7

CustomerID FilmID

24680 7

Page 16 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Division Example, cont.

4. pR – S ((pR – S (r) s) – r):

(the A columns of the victims)

5. pR – S (r):

(the A columns of r: the

maximum possible result of r ÷ s)

6. pR – S (r) – pR – S ((pR – S (r) s) – r):

(Step 5 – Step 4: the maximum

result minus the victims)

Relational Query Languages E-46

CustomerID

24680

CustomerID

12345

24680

36925

CustomerID

12345

36925

Relational Query Languages E-47

Intuition for Equivalence

• r s = pR – S (r) – pR – S ((pR – S (r) s) – r)

• pR – S (r): the A columns (A1, A2, ..., An) of r

• pR – S (r) s: the A and B columns; the maximum

possible product

• (pR – S (r) s) – r: the possible tuples that aren’t in r

(termed the victims)

• pR – S ((pR – S (r) s) – r): the A columns of the victims

• pR – S (r): the A columns (A1, A2, ..., An) of r: the

maximum possible result of r ÷ s, note: r ÷ s pR – S (r)

• pR – S (r) – pR – S ((pR – S (r) s) – r): the resulting tuples

(just the A columns) that aren’t victims

Relational Query Languages E-48

Relational Completeness

• All the operators can be expressed in terms of the five

basic operators: s, p, -, , (along with r).

• This set is called a complete set of relational algebraic

operators.

• Any query language that is at least as powerful as these

operators is termed (query) relationally complete.

Page 17 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-49

Limitations of the Algebra
• Can't do arithmetic.

 Find the rental price assuming a 10% increase.

• Can't do aggregates.
 How many films has each customer reserved?

• Can't handle “missing” data.
 Make a list of the films, along with who reserved it, if

applicable.

• Can't perform transitive closure.
 For a partof(Part, ConstituentPart) relation, find all parts in

the car door.

• Can't sort, or print in various formats.
 Print a reserved summary, sorted by customer name.

• Can't modify the database.
 Increase all $3.25 rentals to $3.50.

Relational Query Languages E-50

Overview

Relational Algebra (RA)

 Operators
 Complete set – projection, selection, Cartesian product, difference,

union

 Convenient – intersection, theta join, equijoin, natural join, semijoin,
division

 Example queries

 Limitations

 Extended Relational Algebra Operators

• Tuple Relational Calculus (TRC)

• Domain Relational Calculus (DRC)

Relational Query Languages E-51

Extending the Projection Operator

• The generalized projection operator allows expressions

in addition to column names in the subscript.

• Find the rental price, assuming a 10% increase.

pTitle, RentalPrice*1.1(Film)

Page 18 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-52

Scalar Aggregate

Fagg1, ..., aggk (r) =

 t a1 ... ak | t r

 a1 = agg1 ({u | u r})

 ak = aggk ({u | u r })

• Appends new attributes.

• Each aggregate function aggi decides which attribute

to aggregate over, e.g., agg2 could be the sum of the

third attribute, or the average of the fifth attribute.
• Note: Text does not retain original columns.

Relational Query Languages E-53

Scalar Aggregates, cont.

• How many reservations are there?

• What is the maximum rental price for foreign films?

pcount(Fcount (Reserved))

pmax(Fmax(Rentalprice) (sKind = “F” (Film)))

Relational Query Languages E-54

Aggregate Functions

GFagg1, ..., aggk (r) =

 t a1 ... ak | t r

 a1 = agg1 ({u | u r u[G] = t[G]})

 ak = aggk ({u | u r u[G] = t[G]})

• The grouping attribute(s) G in aggregate functions

apply the aggregate separately to each group.

• The original tuple t determines which group is

associated with the tuple.

Page 19 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-55

Aggregates Functions, cont.

• How many reservations are there at each rental price?

pRentalPrice, count(RentalPriceFcount (Reserved ! Film))

Relational Query Languages E-56

Outer Joins

• In a regular equijoin or natural join, tuples in r or s that do not

having matching tuples in the other relation do not appear in the

result.

• The outer joins retain these tuples, and place nulls in the missing

attributes.

• Left outer join:

r ' s = r ! s ((r – (r " s)) (null, ..., null))

• Right outer join:

r (s = r ! s ((null, ..., null) (s – (s " r)))

• Full outer join:

r & s = r ! s ((r – (r " s)) {(null, ..., null)})

 ({(null, ..., null)} (s - (s " r)))
• Note: text uses a slightly different notation.

Relational Query Languages E-57

Outer Join Example

A B C

1 y

3 x

2 z

r: s: D B

“Tom” y

“Eric” x

“Mel” w

A B C D

1 y “Tom”

3 x “Eric”

2 z Null

Null w Null “Mel”

r & s:

Page 20 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-58

Movie Web Query

• Make a list of the films, along with who reserved it,

if applicable.

pTitle, Name(Film ' (Reserved ! Customer))

Relational Query Languages E-59

Overview

• Relational Algebra (RA)

 Operators

 Limitations

 Extended Relational Algebra Operators

• Tuple Relational Calculus (TRC)

• Domain Relational Calculus (DRC)

Relational Query Languages E-60

Relational Calculus

• The relational algebra is procedural, specifying how,
that is, a sequence of operations to derive the desired
results.

• Relational calculus is based on first-order predicate
calculus.

• Relational calculus is more declarative, specifying
what is desired.

• The expressive power of the two languages is identical.

 This implies that relational calculus is relationally complete.

• Many commercial relational query languages are based
on the relational calculus.

• The implementations are based on the relational
algebra.

Page 21 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-61

Relational Calculus, cont.

 Tuple Relational Calculus (TRC)

 Domain Relational Calculus (DRC)

Relational Query Languages E-62

Tuple Relational Calculus

• A tuple variable ranges over tuples of a particular

relation.

• Example: List the information about expensive films.

{t | Film(t) t.RentalPrice > 4}

• Film(t) specifies the range relation Film for the tuple

variable t.

• Each tuple satisfying t.RentalPrice > 4 is retrieved.

• The entire tuple is retrieved.

• List the titles of expensive films.

{t.Title | Film(t) t.RentalPrice > 4}

Relational Query Languages E-63

Syntax of Tuple Relational Calculus

{t1 .A1, t2.A2, ... , tj.Aj | P (t1, t2 , ... , tj)}

• t1, t2 , ... , tj are tuple variables.

• Each tk is an tuple of the relation over which it ranges.

• P is a predicate, which is made up of atoms, of the

following types.

 r (tk) identifies r as the range of tk

 Atoms from predicate calculus: , , ,,

Page 22 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-64

Movie Web Queries

• List the outrageously priced films (over $4 or

under $1).

• List the ID numbers of the films that are expensive and

have been reserved.

{t | Film(t) (t.RentalPrice > 4

 t.RentalPrice < 1)}

{t.FilmID | Film(t) (t.RentalPrice > 4

 (r (Reserved(r) t.FilmID = r.FilmID))}

{t.FilmID, t.Title, t.RentalPrice, t.Kind | Film(t)

 (t.RentalPrice > 4 t.RentalPrice < 1)}

Relational Query Languages E-65

Movie Web Queries, cont.

• List the IDs of the expensive films that have not been

reserved.

{t.FilmID | Film(t) (t.RentalPrice > 4

 r (Reserved(r) t.FilmID = r.FilmID))}

Relational Query Languages E-66

Movie Web Queries, cont.

• List the titles of all reserved films.

• List the customers who have reserved a film.

{ f.Title | r (Film(f) Reserved(r)

 f.FilmID = r.FilmID)}

{c.Name | r (Customer(c) Reserved(r)

 c.CustomerID = r.CustomerID)}

Page 23 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-67

Movie Web Queries, cont.

• List the customers who have reserved expensive films.

• List the streets of customers who have reserved foreign

films.

{c.Name | r f (Customer(c) Reserved(r)

 Film(f) f.RentalPrice > 4

 c.CustomerID = r.CustomerID

 r.FilmID = f.FilmID)}

{c.Street | r f (Customer(c) Reserved(r)

 Film(f) f.Kind = “F”

 c.CustomerID = r.CustomerID

 r.FilmID = f.FilmID)}

Relational Query Languages E-68

Movie Web Queries, cont.

• List the customers who have reserved all the foreign

films.

• Rephrased: List the customers for which, for all films,

if that film was a foreign film, then that film must have

been reserved by that customer.

{c.Name | Customer(c)

 f (Film(f) f.Kind = “F”

 (r (Reserved(r)

 r.FilmID = f.FilmID

 r.CustomerID = c.CustomerID)))}

a b is shorthand for “a b” or “if a then b”

Relational Query Languages E-69

Equivalences

• x (P(x)) x (P(x))

• x (P(x)) x (P(x))

• x (P(x) Q(x)) x (P(x) Q(x))

• x (P(x) Q(x)) x (P(x) Q(x))

• x (P(x) Q(x)) x (P(x) Q(x))

• x (P(x) Q(x)) x (P(x) Q(x))

• x (P(x)) x (P(x))

• x (P(x)) x (P(x))

Page 24 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-70

Movie Web Queries, cont.

• Find the film(s) with the highest rental price.

• Rephrased: Find the film(s) for which all films have a

rental price that is not higher.

• Alternative formulation: Find the film(s) with a rental

price for which no other rental price is higher.

• Rephrased: Find the film(s) for which there does not

exist a film with a higher rental price.

{ f.FilmID | Film(f) f2 (Film(f2)

 f2.RentalPrice > f.RentalPrice)}

{ f.FilmID | Film(f) f2 (Film(f2)

 f2.RentalPrice f.RentalPrice)}

Relational Query Languages E-71

Overview

• Relational Algebra (RA)

 Operators

 Limitations

 Extended Relational Algebra Operators

• Tuple Relational Calculus (TRC)

• Domain Relational Calculus (DRC)

Relational Query Languages E-72

Domain Relational Calculus

• Each query is an expression of the form

{ x1, x2, ... , xn | P (x1, x2, ... , xn)}

• P is a formula similar to the formula in the predicate

calculus.

• List the information on the expensive films.

• List the titles of the expensive films.

{ F, T, R, K | Film(F, T, R, K) R > 4}

{ T | F R K (Film(F, T, R, K) R > 4)}

Page 25 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-73

Movie Web Queries

• List the outrageously priced films (over $4 or under $1).

• List the ID numbers of the films that are expensive and

have been reserved.

{T | F R K (Film(F, T, R, K) (R > 4 R < 1))}

{F | T R K (Film(F, T, R, K) R > 4

 I D (Reserved(I, F, D)))}

Relational Query Languages E-74

Movie Web Queries, cont.

• List the IDs of the expensive films that have not been

reserved.

{F | T,R,K (Film(F, T, R, K) R > 4

 (I D (Reserved(I, F, D))))}

Relational Query Languages E-75

Movie Web Queries, cont.

• List the titles of all reserved films.

• List the customers who have reserved a film.

{T | F,R,K (Film(F, T, R, K)

 I,D (Reserved(I, F, D)))}

{N | I,S,C,ST,Z (Customer(I, N, S, C, ST, Z)

 F,D (Reserved(I, F, D)))}

Page 26 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-76

Movie Web Queries, cont.

• List the customers who have reserved expensive films.

• List the streets of customers who have reserved foreign

films.

{N | I,S,C,ST,Z (Customer(I, N, S, C, ST, Z)

 F,D (Reserved(I, F, D)

 (T,R,K (Film(F, T, R, K) R > 4))}

{S| I,N,C,ST,Z (Customer(I, N, S, C, ST, Z)

 F,D (Reserved(I, F, D)

 T,R (Film(F, T, R,“F”))))}

Relational Query Languages E-77

Movie Web Queries, cont.

• List the customers who have reserved all the foreign

films.

{N | I,S,C,ST,Z (Customer(I, N, S, C, ST, Z)

 F (T,R (Film(F, T, R,“F”)

 D (Reserved(I, F, D)))))}

Relational Query Languages E-78

Movie Web Queries, cont.

• Find the film(s) with the highest rental price.

• Alternative formulation: Find the film(s) with a rental

price for which no other rental price is higher.

 {T | F,R,K (Film(F, T, R, K)

 (F2,T2,R2,K2 (Film(F2,T2,R2,K2) R2 > R)))}

Page 27 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-79

Assertions

• Assertions are more general integrity constraints,

expressed directly as predicates which must always be

satisfied.

• These can be expressed in the algebra or calculi, of the

form: “There does not exist an offending tuple.”

Relational Query Languages E-80

No video rents for less than $0.

• Algebra

 sRentalPrice < 0 (Film) = {}

• Tuple Relational Calculus

 f(Film(f) f.RentalPrice 0)

 f(Film(f) f.RentalPrice < 0)

• Domain Relational Calculus

 F (T, R K(Film(F,T,R,K)) R 0)

 F,T,R,K(Film(F,T,R,K) R < 0)

Relational Query Languages E-81

Another Assertion Example

• The spoken and subtitled languages for a film must be
different.

• Algebra

 sspokenLanguage = subtitleLanguage (Film) = {}

• Tuple Relational Calculus

 f(Film(f) f.spokenLanguage = f.subtitleLanguage)

• Domain Relational Calculus

 (F,T,R,K,SP,SL (Film(F,T,R,K,SP,SL) SP = SL))

Page 28 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-82

Summary

• Relational algebra

 Objects are relations (sets of n-tuples).

• Tuple relational calculus

 Variables range over relations (sets of tuples).

 Each variable is associated with an individual tuple.

• Domain relational calculus

 Variables range over domains (sets of values).

 Each variable is associated with an individual value.

• Misnamed

 Tuple relational calculus and Value relational calculus

 Relational relational calculus and Domain relational calculus

Relational Query Languages E-83

Expressive Power

• Theorem: The following three languages define exactly the same

class of functions.

 Relational algebra expressions

 Safe relational tuple calculus formulas

 Safe relational domain calculus formulas

• Proof:
 relational algebra ¹ (safe) tuple relational calculus

 Show via induction that every relational algebra expression has a counterpart

in the tuple relational calculus.

 tuple relational calculus ¹ domain relational calculus

 domain relational calculus ¹ relational algebra

• Corollary: All three languages are relationally complete.

Relational Query Languages E-84

Completeness

Theorem: The tuple relational calculus is complete.

Proof: First convert algebraic expression to use just the

five basic operators. Then, if algebraic expression is

just one operator, substitute the calculus form.

 Selection sP(r) { t | r(t) P(t) }

 Projection pX(r) { t[X] | r(t) }

 Union r s { t | r(t) s(t) }

 Difference r – s { t | r(t) s(t) }

 Cartesian product r s { t q | r(t) s(q) }

 For algebraic expressions with more than one operator,

induct on length of the algebraic expression.

Page 29 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-85

Completeness, Example

• List the titles of all reserved films.

• Replace with the five basic operators:

• Replace projection:

pTitle (sFilm.FilmID = Reserved.FilmID(Film Reserved))

{t.Title | sFilm.FilmID = Reserved.FilmID

 (Film Reserved) (t)}

¼Title (Film Reserved)

Relational Query Languages E-86

Completeness Example, Cont.

• Replace selection:

• Replace the Cartesian product:

• Simplify

{t.Title | (Film Reserved) (t)

 t[Film.FilmID] = t[Reserved.FilmID] }

{t.Title | 9f (Film(f) 9r (Reserved(r)

 f.FilmID = r.FilmID t = f r)) }

{f.Title | Film(f) 9r (Reserved(r)

 f.FilmID = r.FilmID) }

Relational Query Languages E-87

Safety

• It is possible to write tuple calculus expressions that
generate infinite relations.

• {t | r(t)} results in an infinite relation if the domain
of any attribute of relation r is infinite.

• We wish to ensure that an expression in relational
calculus yields only a finite number of tuples.

• The domain of a tuple relational calculus expression is
the set of all values that either appear as constant
values in the expression or that exist in any tuple of the
relations referenced in the expression.

• An expression is safe if all values in its result are from
the domain of the expression.

Page 30 Copyright © 2014 R. T. Snodgrass, C. S. Jensen, K. Torp, and C. E. Dyreson.

CSc 460: Relational Query Languages

Relational Query Languages E-88

Equivalence of Expressive Power

• Theorem: The relational algebra is as expressive as the

(safe) tuple relational calculus.

• (Informal) Proof: by induction on the number of

operators in the calculus predicate

 X(...) p(...)

 X Y p(X Y)

 P(r) sP (...)

 P(r) U – r

 X Y (X Y)

 X(P(r)) X(P(r))

	Blank
	motivate3
	relation3
	relationlang3
	text
	CSc 460�Database Design��Fall 2014
	The REQUIRED textbook for this course is:�
	Also REQUIRED for this course is:�

	Blank Page

