
CSE	
 15L:	

So*ware	
 Tools	
 and	
 Techniques	

Laboratory	

	

Summer	
 Session	
 I	

	

h>p://ieng6.ucsd.edu/~cs15u/index.html	

	

Dr.	
 ILKAY	
 ALTINTAS	

	

TA:	
 ALOK	
 SINGH	

Lecture	
 6	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 July	
 21st,	
 2014	

	

Today’s	
 Topics	

1.  Shell	
 scripTng	
 programming	
 constructs	

–  Shell	
 variables	
 and	
 operators	

–  Logic	
 structures	

	

2	

Shell Programming
§  Programming features of the UNIX/LINUX shell:

! Shell variables: Your scripts often need to keep values in
memory for later use. Shell variables are symbolic names that
can access values stored in memory

! Operators: Shell scripts support many operators, including those
for performing mathematical operations

! Logic structures: Shell scripts support sequential logic (for
performing a series of commands), decision logic (for branching
from one point in a script to another), looping logic (for repeating
a command several times), and case logic (for choosing an
action from several possible alternatives)

Variables
•  Variables are symbolic names that represent values stored in memory
•  Three different types of variables

–  Global Variables: Environment and configuration variables, capitalized, such as
HOME, PATH, SHELL, USERNAME, and PWD.
 When you login, there will be a large number of global System variables that are
already defined. These can be freely referenced and used in your shell scripts.

–  Local Variables

 Within a shell script, you can create as many new variables as needed. Any variable
created in this manner remains in existence only within that shell.

–  Special Variables

 Such as positional parameters $1, $2 …

 $1 refers to the first string after the name of the script file on the
command line, e.g., echo $1

 $2 refers to the second string, and so on.

A few global (environment)
variables

 SHELL Current shell
DISPLAY Used by X-Windows system to identify the

display

HOME Fully qualified name of your login directory

PATH Search path for commands
MANPATH Search path for <man> pages

PS1 & PS2 Primary and Secondary prompt strings

USER Your login name
TERM terminal type
PWD Current working directory

Referencing Variables

Variable contents are accessed using ‘$’:
e.g. $ echo $HOME

 $ echo $SHELL
To see a list of your environment variables:

 $ printenv!

or:

$ printenv | more!

Defining Local Variables
•  As in any other programming language, variables can be defined and used

in shell scripts.

Unlike other programming languages, variables in Shell Scripts
are not typed.

•  Examples :
 a=1234 # a is NOT an integer, a string instead
 b=$a+1 # will not perform arithmetic but be the string ‘1234+1’
 b=`expr $a + 1 ` will perform arithmetic so b is 1235 now.

 Note : +,-,/,*,**, % operators are available.
 b=abcde # b is string
 b='abcde' # same as above but much safer.
 b=abc def # will not work unless ‘quoted’
 b='abc def' # i.e. this will work.

IMPORTANT NOTE: DO NOT LEAVE SPACES AROUND THE =

Referencing variables
--curly bracket

•  Having defined a variable, its contents can be referenced by
the $ symbol. E.g. ${variable} or simply $variable. When
ambiguity exists $variable will not work. Use ${ } the
rigorous form to be on the safe side.

•  Examples:
 a='abc'!
 b=${a}def # this would not have worked without the{ } as
 #it would try to access a variable named adef!

!
account='cse15f'!

!echo ${account%??}!
!echo ${account#??}!

Variable List/Arrary
•  To create lists (array) – round bracket

 $ set Y = (UNL 123 CS251)

•  To set a list element – square bracket

 $ set Y[2] = HUSKER

•  To view a list element:

 $ echo $Y[2]

•  Example:
 #!/bin/sh!
! ! !a=(1 2 3)!
! ! !echo ${a[*]}!
! ! !echo ${a[0]}!
!Results: !1 2 3!
! ! !1!

Positional Parameters
•  When a shell script is invoked with a set of command line

parameters each of these parameters are copied into
special variables that can be accessed.

–  $0 This variable that contains the name of the script
–  $1, $2, ….. $9 1st, 2nd 3rd command line parameter
–  $# Number of command line parameters
–  $$ process ID of the shell
–  $@ same as $* but as a list one at a time (see for loops later)
–  $? Return code ‘exit code’ of the last command
–  Shift command: This shell command shifts the positional parameters

by one towards the beginning and drops $1 from the list. After a shift $2
becomes $1 , and so on … It is a useful command for processing the input
parameters one at a time.

Example:
 Invoke : ./myscript one two buckle my shoe!
 During the execution of myscript variables $1 $2 $3 $4

and $5 will contain the values one, two, buckle,
my, shoe respectively.

Variables
•  vi myinputs.sh

!#! /bin/sh!
!echo Total number of inputs: $#!
!echo First input: $1!
!echo Second input: $2 !!

•  chmod u+x myinputs.sh

•  myinputs.sh ALTINTAS UCSD CSE

 Total number of inputs: 3
 First input: ALTINTAS
 Second input: UCSD

Shell Programming

•  programming features of the UNIX
shell:
! Shell variables
! Operators
! Logic structures

Shell Operators

•  The Bash/Bourne/ksh shell operators are divided
into three groups:

– defining and evaluating operators,

– arithmetic operators, and

–  redirecting and piping operators

Defining and Evaluating

•  A shell variable take on the generalized form
variable=value (except in the C shell).
 $ set x=37; echo $x!
 37
 $ unset x; echo $x!
! !x: Undefined variable.

•  You can set a pathname or a command to a
variable or substitute to set the variable.
 $ set mydir=`pwd`; echo $mydir!

Pipes & Redirecting

Linux Commands

" Piping: An important early development in Unix , a way to pass the
output of one tool to the input of another.

 $ who | wc −l!

 By combining these two tools, giving the wc command the output of
who, you can build a new command to list the number of users
currently on the system

" Redirecting via angle brackets: Redirecting input and output follows
a similar principle to that of piping except that redirects work with
files, not commands.

 tr '[a-z]' '[A-Z]' < $in_file > $out_file
 The command must come first, the in_file is directed in by the
less_than sign (<) and the out_file is pointed at by the
greater_than sign (>).

Arithmetic Operators

•  expr supports the following operators:
– arithmetic operators: +,-,*,/,%
– comparison operators: <, <=, ==, !=, >=, >
– boolean/logical operators: &&, ||
– parentheses: (,)
– precedence is the same as C, Java

Arithmetic Operators

•  vi math.sh
!!
 !!#!/bin/sh!
!!count=5!

!! !count=`expr $count + 1 `!
! !echo $count!

•  chmod u+x math.sh
•  math.sh

 6!

Arithmetic Operators

•  vi real.sh
!!#!/bin/sh!
!!a=5.48!
!!b=10.32!

!! !c=`echo “scale=2; $a + $b” |bc`!
! !echo $c!

•  chmod u+x real.sh
•  ./real.sh

 15.80!

Arithmetic operations in shell scripts

var++ ,var-- , ++var , --
var

post/pre increment/
decrement

+ , - add subtract
* , / , % multiply/divide,

remainder
** power of
! , ~ logical/bitwise negation
& , | bitwise AND, OR
&& || logical AND, OR

Shell Programming

•  programming features of the UNIX
shell:
! Shell variables
! Operators
! Logic structures

Shell Operators

•  The Bash/Bourne/ksh shell operators are divided
into three groups:

– defining and evaluating operators,

– arithmetic operators, and

–  redirecting and piping operators

Defining and Evaluating

•  A shell variable take on the generalized form
variable=value (except in the C shell).
 $ set x=37; echo $x!
 37
 $ unset x; echo $x!
! !x: Undefined variable.

•  You can set a pathname or a command to a
variable or substitute to set the variable.
 $ set mydir=`pwd`; echo $mydir!

Pipes & Redirecting

Linux Commands

" Piping: An important early development in Unix , a way to pass the
output of one tool to the input of another.

 $ who | wc −l!

 By combining these two tools, giving the wc command the output of
who, you can build a new command to list the number of users
currently on the system

" Redirecting via angle brackets: Redirecting input and output follows
a similar principle to that of piping except that redirects work with
files, not commands.

 tr '[a-z]' '[A-Z]' < $in_file > $out_file
 The command must come first, the in_file is directed in by the
less_than sign (<) and the out_file is pointed at by the
greater_than sign (>).

Arithmetic Operators

•  expr supports the following operators:
– arithmetic operators: +,-,*,/,%
– comparison operators: <, <=, ==, !=, >=, >
– boolean/logical operators: &&, ||
– parentheses: (,)
– precedence is the same as C, Java

Arithmetic Operators

•  vi math.sh
!!
 !!#!/bin/sh!
!!count=5!

!! !count=`expr $count + 1 `!
! !echo $count!

•  chmod u+x math.sh
•  math.sh

 6!

Arithmetic Operators

•  vi real.sh
!!#!/bin/sh!
!!a=5.48!
!!b=10.32!

!! !c=`echo “scale=2; $a + $b” |bc`!
! !echo $c!

•  chmod u+x real.sh
•  ./real.sh

 15.80!

Arithmetic operations in shell scripts

var++ ,var-- , ++var , --
var

post/pre increment/
decrement

+ , - add subtract
* , / , % multiply/divide,

remainder
** power of
! , ~ logical/bitwise negation
& , | bitwise AND, OR
&& || logical AND, OR

Shell Programming

•  programming features of the UNIX
shell:
! Shell variables
! Operators
! Logic structures

Shell Logic Structures

The four basic logic structures needed for program development are:

! Sequential logic: to execute commands in the order in which
they appear in the program

! Decision logic: to execute commands only if a certain condition
is satisfied

! Looping logic: to repeat a series of commands for a given
number of times

! Case logic: to replace “if then/else if/else” statements when making

numerous comparisons

Conditional Statements
(if constructs)

The most general form of the if construct is;

if command executes successfully
then

 execute command
elif this command executes successfully
then

 execute this command
 and execute this command

else
 execute default command

fi

However- elif and/or else clause can be omitted.

Examples
SIMPLE EXAMPLE:

 if date | grep “Fri”
 then
 echo “It’s Friday!”
 fi

FULL EXAMPLE:

 if [“$1” == “Monday”]
 then
 echo “The typed argument is Monday.”
 elif [“$1” == “Tuesday”]

 then
 echo “Typed argument is Tuesday”

 else
 echo “Typed argument is neither Monday nor Tuesday”
 fi

Note: = or == will both work in the test but == is better for readability.

String	
 and	
 numeric	
 comparisons	
 used	
 with	
 test	
 or	
 [[
 	
 	
 	
 	
]]	
 which	
 is	
 an	
 alias	
 for	
 test	
 and	

also	
 [
 	
 	
]	
 which	
 is	
 another	
 acceptable	
 syntax	

•  string1 = string2 True if strings are identical
•  String1 == string2 …ditto….
•  string1 !=string2 True if strings are not identical
•  string Return 0 exit status (=true) if string is not null
•  -n string Return 0 exit status (=true) if string is not null
•  -z string Return 0 exit status (=true) if string is null

Tests

§  int1 –eq int2 Test identity

§  int1 –ne int2 Test inequality

§  int1 –lt int2 Less than

§  int1 –gt int2 Greater than

§  int1 –le int2 Less than or equal
§  int1 –ge int2 Greater than or equal

Combining tests with logical operators || (or)
and && (and)

 •  Syntax: if cond1 && cond2 || cond3 …

•  An alternative form is to use a compound statement using the –a and –o
keywords, i.e.

 if cond1 –a cond22 –o cond3 …

•  Where cond1,2,3 .. Are either commands returning a value or test
conditions of the form [] or test …

•  Examples:
if date | grep “Fri” && `date +’%H’` -gt 17
then

 echo “It’s Friday, it’s home time!!!”
fi

if [“$a” –lt 0 –o “$a” –gt 100] # note the spaces around] and [
then

 echo “ limits exceeded”
fi

File inquiry operations

-d file Test if file is a directory
-f file Test if file is not a directory
-s file Test if the file has non zero length
-r file Test if the file is readable
-w file Test if the file is writable
-x file Test if the file is executable
-o file Test if the file is owned by the user
-e file Test if the file exists
-z file Test if the file has zero length

All these conditions return true if satisfied and false

otherwise.

Decision Logic

•  A simple example

 #!/bin/sh!
!if ["$#" -ne 2] then!
 echo $0 needs two parameters!!
 echo You are inputting $# parameters.!
else!
!! par1=$1!
 par2=$2!
fi!
echo $par1!
echo $par2 !!

Decision Logic
Another example:

 #! /bin/sh!
!!# number is positive, zero or negative!
!!echo –e "enter a number:\c"!
!!read number!
!!if ["$number" -lt 0] !
!!then!
! !echo "negative"!
!!elif [“$number” -eq 0] !
!!then!
! !echo zero!
!!else!
!! echo positive!
!!fi!

Loops
•  Loop is a block of code that is repeated a

number of times.
•  The repeating is performed either a pre-

determined number of times determined by a
list of items in the loop count (for loops) or
until a particular condition is satisfied (while
and until loops)

•  To provide flexibility to the loop constructs
there are also two statements namely break
and continue are provided.

for loops

•  Syntax:
 for arg in list

 do
 command(s)

 ...
 done
•  Where the value of the variable arg is set to the

values provided in the list one at a time and the
block of statements executed. This is repeated until
the list is exhausted.

•  Example:
 for i in 3 2 5 7
 do
 echo " $i times 5 is $(($i * 5)) "
 done

The while Loop

•  A different pattern for looping is created using the while
statement

•  The while statement best illustrates how to set up a loop
to test repeatedly for a matching condition

•  The while loop tests an expression in a manner similar to
the if statement

•  As long as the statement inside the brackets is true, the
statements inside the do and done statements repeat

while loops
•  Syntax:

!while this_command_execute_successfully!
!!do!
!! !this command!
!! !and this command!
!!done!

•  EXAMPLE:
 while test "$i" -gt 0 # can also be while [$i > 0]

 do
 i=`expr $i - 1`
 done

Looping Logic

•  Example:

#!/bin/sh!
for person in Bob
Susan Joe Gerry!

do!
!echo Hello $person!
done!
!

Output:
!Hello Bob!
!Hello Susan!
!Hello Joe!
!Hello Gerry!

§  Adding	
 integers	
 from	
 1	
 to	
 10	

	
 	

!#!/bin/sh!
!i=1!
!sum=0!
!while [“$i” -le 10]!
 !!do!
 !echo Adding $i into
the sum.!

 !sum=`expr $sum + $i`!
 !! !i=`expr $i + 1 `!
!!done!
!echo The sum is $sum.!

until loops

•  The syntax and usage is almost identical to the while-loops.
•  Except that the block is executed until the test condition is

satisfied, which is the opposite of the effect of test
condition in while loops.

•  Note: You can think of until as equivalent to not_while

Syntax:

 until test
 do
 commands ….
 done

Switch/Case Logic

•  The switch logic structure simplifies the selection
of a match when you have a list of choices

•  It allows your program to perform one of many
actions, depending upon the value of a variable

Case statements
•  The case structure compares a string ‘usually contained in a

variable’ to one or more patterns and executes a block of
code associated with the matching pattern. Matching-tests
start with the first pattern and the subsequent patterns are
tested only if no match is not found so far.

case argument in

pattern 1) execute this command
 and this
 and this;;
pattern 2) execute this command
 and this
 and this;;
esac

Functions
•  Functions are a way of grouping together commands so that they can later be

executed via a single reference to their name. If the same set of instructions
have to be repeated in more than one part of the code, this will save a lot of
coding and also reduce possibility of typing errors.

 SYNTAX:
 functionname()

 {
 block of commands

 }

#!/bin/sh

 sum() {
x=`expr $1 + $2`
echo $x
}

sum 5 3

echo "The sum of 4 and 7 is `sum 4 7`"

Next	
 Week	

•  XML	
 and	
 HTML	

•  Building	
 with	
 Ant	

•  More	
 debugging	

CondiTonals	

if ["$var" = "hello world"]!
!
then!
!
!echo "goodbye world"!
!
fi!
!
!

for	
 Loops	

for i in {1..10}!
!
do!
!
!if [$[i % 2] = 1]; then!

!
! !echo $i "is odd"!

!
!fi!

!
done!
!

for i in {1..10}!
do!
! !if [$[i % 2] = 1]; then!
! ! !echo $i "is odd”!
! !else!
! ! !echo $i "is even”!
! !fi!
done!
!

Case	

for i in {1..10}!
do!
! !case $[i % 3]!
! ! !in!
! ! ! !0)!
! ! !echo $i "apples”!
! ! !;;!
! ! ! !1)!
! ! !echo $i "oranges”!
! ! !;;!
! ! ! !2)!
! ! !echo $i "this code is silly”!
! ! !;;!
! !esac!

done!

