
Android AOSP Overview

Karthik Dantu and Steve Ko

Administrivia

•  Any issues in building?

Android Build System & Source Tree

•  Today’s goal
•  Getting to know the build system
•  Navigating the source tree

•  Resources
•  <android source root>/build/core/build-

system.html
•  http://elinux.org/
•  “Embedded Android” by Karim Yaghmour
•  Other sources: “Android Building” google groups

Git & Repo

•  AOSP is a set of repositories, each individually
managed by git.
•  If you don’t know git, please go find out!

•  repo is a tool that manages multiple git repositories.
•  .repo directory: management files

•  It’s actually another git repository.
•  repo init: just clones this repository.
•  repo sync: clones other repositories based on

manifest.xml file.

Try Out!

•  You might need to add your own repository for your
project.

$ cd .repo
$ ls –al
$ cd manifests
$ vi default.xml

•  (vi or whatever editor)
$ git branch -a

Build Targets

•  Build name + build type (eng, user, & userdebug)
•  Generates different builds for different purposes

•  eng: produces an “engineering” build.
•  user: produces a release build.
•  userdebug: produces a release build plus some

limited debugging support.
•  Sets different system properties.

•  getprop, setprop
•  property_get(), property_set()

Build Targets

•  eng
•  adb enabled and runs as root by default

(ro.secure=0)
•  DDMS & debugger connection enabled

(ro.debuggable=1)
•  user

•  adb disabled by default & no debugging
•  userdebug

•  adb enabled (does not run as root) & debugging
support

Try Out!

•  You might want to define system-wide properties.

$ adb shell getprop
$ adb shell getprop ro.secure
$ adb shell getprop ro.debuggable

Build Environment

•  Useful commands after source-ing build/envsetup.sh
•  croot: cd to the source root.
•  m: make from the source root.
•  mm: make in the current module.
•  mmm: make what’s specified.
•  cgrep, jgrep, mgrep: grep in C, Java, and

Makefiles.
•  godir: go to a directory that contains a file. (If

you run it, it will index first.)
•  printconfig: prints out the current configuration.

Try Out!

$ godir Android.mk

Make System

•  Combines
•  Build configuration (build/envsetup.sh & lunch)
•  Core .mk files (build/core/main.mk, build/core/

config.mk, build/core/definitions.mk, build/
core/Makefile, etc.)

•  Module description (Android.mk) files
•  Product descriptions (AndroidProducts.mk & .mk

for the specific product)
•  Board description (BoardConfig.mk) files

Make Targets

•  make showcommands: shows all the make
commands as it goes on. (good for debugging)

•  make clobber: the cleanest removal.
•  make modules: shows all modules that can be built

individually.
•  make <module name>: builds just that module.
•  Android.mk: Makefile for a module.

•  LOCAL_MODULE is the target name for a module

Try Out!

$ make modules
$ cd dalvik/dalvikvm
$ vi Android.mk

Source Tree

•  abi: C/C++ Application Binary Interface
•  bionic: Android’s C library
•  bootable: Things related to booting (bootloader,

installer, etc.)
•  build: Build tools and makefiles
•  cts: Compatibility Test Suite
•  dalvik: Dalvik VM
•  developers: Code samples

Source Tree

•  development: Tools, scripts, files related to
development (e.g., emulator, ndk, & sdk)

•  device: Device-specific files
•  docs: source.android.com docs
•  external: various tools/libraries from external

sources (other open source projects)
•  frameworks: the Android framework

•  Especially, base & base/core (android.* &
com.google.*)

Source Tree

•  hardware: Hardware support libraries, e.g., Wi-Fi,
framebuffers, etc.

•  libcore: Core Java libraries (java.*) mostly from
Apache Harmony VM

•  libnativehelper: Helper functions written in C/C++
•  ndk: Native Development Kit
•  packages: Essential APKs that gets installed, e.g.,

Browser, Phone, ContactsProvider, etc.
•  pdk: Platform Development Kit

Source Tree

•  prebuilts: Prebuilt tools for compiling (mainly for
cross-compiling)

•  sdk: Software Development Kit
•  system: Core system tools and libraries, e.g., adb,

fastboot, sh, init, logcat, wlan, liblog, & libcutils.
•  tools: Other external tools
•  vendor: Vendor-specific files

File System Structure

/boot: kernel image and ramdisk
/system: the Android system
/recovery: recovery image & space for the recovery

mode
/data: user data, e.g., apps (/data/app & /data/data/

<app name>), contacts, etc.
/cache: space for caching (apps can also use this

space.)
/misc: space for system settings
/sdcard: internal SD card (symlinked to /mnt/sdcard)

Other Pseudo File Systems

•  cgroup: Linux control groups
•  /proc/cgroups

•  procfs: kernel live data, e.g., parameters,
processes...
•  /proc

•  sysfs: kernel objects, e.g., devices, FSes, modules,…
•  /sys

•  tmpfs: devices available
•  /dev

Try Out!

$ adb shell df

Architecture
Apps	

System Services	

	

Activity Manager	

Location Manager…	

Java Libraries	

	

android.*	

java.*	

Dalvik, Zygote, Android Rumtime	

APIs	

JNI	

Native Libraries	

 Daemons	

 HAL	

Tools	

Linux Kernel with Android Extensions	

(Wakelocks, Binder, lowmem, etc.)	

Daemons

•  adbd: adb daemon
•  vold: volume manager daemon
•  rild: radio interface layer daemon
•  app_process: Zygote
•  servicemanager: manager for all services

Kernel Extensions

•  wakelocks
•  lowmem handler
•  Binder
•  ashmem (Anonymous Shared Memory)
•  Logger

