
Android Architecture 

Karthik Dantu and Steve Ko 



Administrivia 

•  Show us your build! 
•  Assignment 2 is out and due in one week. 



Project Meetings: This Friday 

•  Multi-Interface Connectivity: Aditya, Chaitanya, 
Devanshu, Swapnesh 

•  Location Services API: AnujG, Subhendu, Sriram, 
Gokhan 

•  Smart Services: Ankesh, Varun, Arshaq, AnujK 
•  Automated cloud backup: Kyle, Rakesh, Sharath, 

Hrishikesh 
•  Quantified Self: Yash, Pratik, Tanmay 



Project Meetings: Next Friday 

•  Analyzing memory pressure in Android: Alex, Ankit, 
Brandon, Engin 

•  Wakelock resource accounting: Rajesh, 
Kshitijkumar, Aravindhan, Babu Prasad 

•  RTAndroid: Pranav, Jerry, Aswin, Mohit 
•  Google Glass Visual Inertial Navigation: Srivathsa, 

Nishanth, Rohit, Priyanka 
 



Today: Overview of Android 

•  Why? 
•  A good example to start with in order to 

understand the source (I think) 
•  Getting deeper with the source 
•  Not quite straightforward to understand 

•  Goal: giving you enough pointers so you can navigate 
the source yourself. 



Things You Need to Know 

•  Android Programming Model 
•  Launcher is implemented with this model. 

•  Android Architecture 
•  Android IPC mechanisms 

•  ActivityManager uses IPC mechanisms. 
•  Zygote 



Android Programming Model 

•  No main() 
•  Four main components: Activity, Service, 

ContentProvider, BroadcastReceiver 
•  You need to implement at least one of them to 

write an Android app. 
•  Event-driven 



Example - Activity 



Example - Activity 



Android Architecture 
Apps	



System Services	


	



Activity Manager	


Location Manager…	



Java Libraries	


	



android.*	


java.*	



Dalvik, Zygote, Android Runtime	



APIs	



JNI	


Native Libraries	

 Daemons	

 HAL	

Tools	



Linux Kernel with Android Extensions	


(Wakelocks, Binder, lowmem, etc.)	





Zygote 

•  C++ (e.g., app_main.cpp, AndroidRuntime.cpp) and 
Java (e,g., ZygoteInit.java) 

•  Starts at boot. 
•  ZygoteInit.java manages a domain socket and listens 

to incoming VM creation requests. 
•  This uses ZygoteConnection.java. 

•  Main flow 
•  Forks a new VM instance. 
•  Loads the class that has the process’s main(). 
•  Calls the main(). 



Android IPC Mechanisms 

•  Android relies heavily on IPC mechanisms. 
•  This goes with the event-driven programming 

model. 
•  Three main mechanisms 

•  Intent 
•  Binder 
•  Looper-Handler 



Intent 

•  You can think of it as a message or a command. 
•  Main fields 

•  Action (e.g., ACTION_VIEW) and Data 
•  Many system events are communicated as intents. 

•  E.g., ACTION_BATTERY_CHANGED, 
ACTION_POWER_CONNECTED, etc. 

•  A reasonable strategy for code navigation 
•  Locate where the switch-case code is for 

different actions 



Binder 

•  The main IPC mechanism on Android 
•  Binder enables method calls across process 

boundaries. 
•  Caller side: A proxy and marshalling code 
•  Callee side: A stub and unmarshalling code 

•  Two ways to use it. 
•  Automatic proxy & stub generation (.aidl) 
•  Manual proxy & stub implementation 



Binder with .aidl 

•  .aidl defines the interface. 
•  Naming convention: I*.aidl. 
•  E.g., IPackageManager.aidl 

•  The stub compiler generates I*.java 
•  E.g., IPackageManager.java 
•  This is part of the build process, i.e., you will not 

find I*.java file in the source (unless you’ve 
compiled already, then it’s under out/). 

•  It contains I*.Stub abstract class 
•  E.g., abstract class IPackageManager.Stub 



Binder with .aidl 

•  A Stub class should be extended. 
•  This is the actual implementation for IPC calls. 
•  E.g., class PackageManagerService extends 

IPackageManager.Stub 
•  Callers can use the interface to make IPC calls. 

•  Callers can import classes in I*.java and use 
Stub.asInterface() when making IPC calls. 

•  E.g., IPackageManager.Stub.asInterface() returns 
an object for making IPC calls. 



Binder with .aidl 

•  A reasonable strategy for code navigation 
•  If you encounter a call using an object returned 

from .asInterface() call, it’s a Binder call. 
•  Don’t worry about marshalling/unmarshalling 

code, e.g., onTransact(). 
•  Find the class that extends the Stub class. (Use 

croot;jgrep) 



Binder without .aidl 

•  Manual implementation of the interface, 
marshalling/unmarshalling, and methods. 

•  E.g., IActivityManager.java defines the interface for 
accessing ActivityManager. 

•  abstract class ActivityManagerNative implements 
IActivityManager and has the marshalling/
unmarshalling code. 

•  There’s a class that extends ActivityManagerNative 
and provide the actual callee-side implementation. 



Binder without .aidl 

•  A reasonable strategy for code navigation 
•  Manual implementation typically follows the 

ActivityManager example. 
•  Interface file à abstract class à extended class 

•  E.g., startActivity() goes through this flow of 
classes. 



Looper-Handler 

•  Looper is a per-thread message loop. 
•  Looper.prepare() 
•  Looper.loop() 

•  A Handler is shared by two threads to send/receive 
messages. 

•  Looper-Hanlder is used in the app control process to 
handle various messages. 



Code Flow for App Start 

•  Launcher sends an intent to start an activity. 
•  startActivity() is a Binder call to ActivityManager. 

•  ActivityManager sends a process fork request. 
•  This request uses a socket to Zygote. 

•  Zygote forks a new VM instance that loads 
ActivityThread. 
•  ActivityThread has the real main() for an app. 



Code Flow for App Start 

•  ActivityThread calls the app’s onCreate() 
•  ActivityThread notifies ActivityManager. 
•  ActivityManager makes a Binder call to 

ActivityThread to start the app (i.e., call onStart()). 



Code Navigation 

•  Let’s see the code! 


