
Dalvik VM 

Karthik Dantu and Steve Ko 



Administrivia 

•  Assignment 3 is out, due in 1 ½ weeks. 
•  Please come on time. 



Today: Dalvik VM 

•  Why? 
•  Core of the Android runtime 

•  I’m not an expert on compiler/runtime, so this will 
be just an overview. 

•  Resources: 
•  AOSP 
•  https://dl.google.com/googleio/2010/android-jit-compiler-

androids-dalvik-vm.pdf 
•  http://fiona.dmcs.pl/podyplomowe_smtm/smob3/Presentation-

Of-Dalvik-VM-Internals.pdf 
•  http://davidehringer.com/software/android/

The_Dalvik_Virtual_Machine.pdf 



General Java Execution 

•  Java compiler: Java code à Java compiler à .class 
files (per class bytecode) 
•  The compiler generates machine-independent 

bytecode, not machine-specific binary. 
•  Java VM/Runtime: Load .class files à execute 

bytecode 



Questions 

•  What is the bytecode format? 
•  How to execute bytecode? 
•  (Tangential) How to manage memory? 



Bytecode 

•  What is bytecode? 
•  Machine-neutral ISA 

•  Many popular languages/runtimes use this 
•  Java, Python, OCaml, LLVM, etc. 



Dalvik Executable (.dex) 

•  Bytecode format for Dalvik 
•  Register-based format 

•  Java bytecode is stack-based. 
•  .dex generation 

•  First pass: One .class file for each and every class 
•  dx tool combines .class files into one .dex file. 
•  Primarily for memory saving 



.class file (from Java) 
•  Magic number, version info for Java 
•  Constant pool  
•  Super class  
•  Access flags (public, private, ...)  
•  Interfaces  
•  Fields  

•  Name and type  
•  Access flags (public, private, static, ...)  

•  Methods 
•  Name and signature (argument and return types) 
•  Access flags (public, private, static, ...)  
•  Bytecode  
•  Exception tables  

•  Other stuff (source file, line number table, ...)  



Example 

 
 
 
 
 
 
 
 
 

http://www.cs.cornell.edu/courses/cs2110/2011fa/Lectures/L24-JVM/L24-JVM.pdf 



Example 





Java Bytecode Assembly 

•  Popular one is called Jasmin 
.method foo()V	


        .limit locals 1	


        ; declare variable 0 as an "int Count;"	


        ; whose scope is the code between Label1 and Label2	


        .var 0 is Count I from Label1 to Label2	


	


    Label1:	


        bipush 10	


        istore_0	


    Label2:	


        return	


    .end method	





Dalvik Executable (.dex) 



Decompiling .dex 

•  Smali 
•  https://code.google.com/p/smali/ 

•  Soot 
•  http://www.sable.mcgill.ca/soot/ 



Questions 

•  What is the bytecode format? 
•  How to execute bytecode? 
•  (Tangential) How to manage memory? 



Compile/Runtime Support 

•  Ahead-of-time compile 
•  C/C++, etc. 
•  Generating machine-dependent binaries 

•  (Pure) Interpretation 
•  Probably no popular example 
•  Interpreting on-the-go 

•  Just-in-time compile 
•  Don’t interpret every time, but generate machine 

code at runtime and keep it for later. 



How to JIT 

•  A large design space 
•  When? Installation, launch, method invoke, etc. 
•  What? Everything, instruction, method, etc. 

•  Dalvik: Trace-based JIT 
•  Only compile “hot” paths (typically under 10% of 

the code) 
•  Good for performance/memory footprint, bad for 

optimization (loses optimization opportunities) 
•  ART: Installation-time JIT at the method granularity 



Dalvik JIT 



.odex 

•  During installation, Dalvik performs some 
optimization on the bytecode itself. 

•  Dalvik generates .odex file for each app at 
installation time. 
•  Static linking 
•  Method in-lining 
•  Removal of empty methods 
•  Etc. 



Questions 

•  What is the bytecode format? 
•  How to execute bytecode? 
•  (Tangential) How to manage memory? 



Memory Management 



Typical Memory Structure 



Heap Management in Dalvik 

•  Used for dynamic memory requests 
•  In Java, there’s no free(), so allocation/deallocation 

is automatically done by VM. 
•  GC (Garbage Collection) is used. 

•  A stop-all method: Suspends the app execution, 
scans the whole heap, and runs the GC algorithm 



Dalvik GC 

•  Mark and sweep 

void mark (Object p) {	


    if (!p.marked) {	


        p.marked = true;	


        for each Object q referenced by p	


            mark(q);	


    }	


}	



void sweep () {	


    for each p in heap	


        if (p.marked)	


            p.marked = false;	


        else	


            heap.release(p);	


}	





Summary 

•  What is the bytecode format? 
•  Dalvik Executable (.dex) 

•  How to execute bytecode? 
•  Trace-based JIT 

•  (Tangential) How to manage memory? 
•  Sharing with Zygote & GC 


