-[é University at Buffalo The State University of New York ' REACHING OTHERS

Dalvik VM

Karthik Dantu and Steve Ko




-[é University at Buffalo The State University of New York ' REACHING OTHERS

Administrivia

Assignment 3 is out, due in 1 ¥2 weeks.
Please come on time.




-[é University at Buffalo The State University of New York ' REACHING OTHERS

Today: Dalvik VM

Why?
- Core of the Android runtime

I’m not an expert on compiler/runtime, so this will
be just an overview.

Resources:
AOSP

https://dl.google.com/googleio/2010/android-jit-compiler-
androids-dalvik-vm. pdf

http://fiona.dmcs.pl/podyplomowe_smtm/smob3/Presentation-
Of-Dalvik-VM-Internals. pdf

http://davidehringer.com/software/android/
The_Dalvik_Virtual_Machine.pdf




-[é University at Buffalo The State University of New York ' REACHING OTHERS

General Java Execution

Java compiler: Java code - Java compiler - .class
files (per class bytecode)

- The compiler generates machine-independent
bytecode, not machine-specific binary.

Java VM/Runtime: Load .class files > execute
bytecode




-[é University at Buffalo The State University of New York ' REACHING OTHERS

Questions

What is the bytecode format?
How to execute bytecode?
(Tangential) How to manage memory?




-[é University at Buffalo The State University of New York ' REACHING OTHERS

Bytecode

What is bytecode?
- Machine-neutral ISA

Many popular languages/runtimes use this
- Java, Python, OCaml, LLVM, etc.




-[é University at Buffalo The State University of New York ' REACHING OTHERS

Dalvik Executable (.dex)

Bytecode format for Dalvik

Register-based format

- Java bytecode is stack-based.

.dex generation

- First pass: One .class file for each and every class
- dx tool combines .class files into one .dex file.
 Primarily for memory saving




-[é University at Buffalo The State University of New York ' REACHING OTHERS

.class file (from Java)

Magic number, version info for Java

Constant pool

Super class
Access flags (public, private, ...)

Interfaces

Fields

- Name and type

- Access flags (public, private, static, ...)
Methods

- Name and signature (argument and return types)
- Access flags (public, private, static, ...)

- Bytecode

- Exception tables
Other stuff (source file, line number table, ...)




‘% University at Buffalo The State University of New York ' REACHING OTHERS

Example

class Foo {
public static void main(String[] args) ({
System.out.println("Hello world");

}

Q) How many entries in the constant pool?

http://www.cs.cornell.edu/courses/cs2110/2011fa/Lectures/L24-JVM/L24-JVM. pdf




% University at Buffalo The State University of New York ' REACHING OTHERS

Example

class Foo {
public static void main (String[] args) {
System.out.println("Hello world") ;

}

Q) How many entries in the constant pool?

A) 33




1) CONSTANT Methodref[10] (class_index = 6, name_and type index = 20)
2) CONSTANT Fieldref[9] (class_index = 21, name_and type index = 22)
3) CONSTANT String[8] (string index = 23)

4) CONSTANT Methodref[10] (class_index = 24, name_and type index = 25)
5) CONSTANT Class[7] (name_index = 26)

6) CONSTANT Class[7] (name_index = 27)

7) CONSTANT Ut£f8[1] ("<init>")

8) CONSTANT Ut£f8[1] (" ()V")

9) CONSTANT Utf8[1] ("Code")

10) CONSTANT Ut£f8[1] ("LineNumberTable")

11) CONSTANT Utf8[1] ("LocalVariableTable")

12) CONSTANT Ut£f8[1] ("this")

13) CONSTANT Ut£f8[1] ("LFoo;")

14) CONSTANT Ut£f8[1] ("main")

15) CONSTANT Ut£f8[1] (" ([Ljava/lang/String;)V")

16) CONSTANT Utf8[1] ("args")

17) CONSTANT Ut£f8[1] ("[Ljava/lang/String;")

18) CONSTANT Utf8[1] ("SourceFile")

19) CONSTANT Utf8[1] ("Foo.java")

20) CONSTANT NameAndType[l1l2] (name_index = 7, signature_index = 8)
21) CONSTANT Class[7] (name_index = 28)

22) CONSTANT NameAndType[1l2] (name_index = 29, signature_index = 30)
23) CONSTANT Utf8[1] ("Hello world")

24) CONSTANT Class[7] (name_index = 31)

25) CONSTANT NameAndType[1l2] (name_index = 32, signature index
26) CONSTANT Ut£f8[1] ("Foo")

27) CONSTANT Utf8[1] ("java/lang/Object")

28) CONSTANT Utf8[1] ("java/lang/System")

29) CONSTANT Ut£8[1] ("out")

30) CONSTANT Utf8[1] ("Ljava/io/PrintStream;")

31)CONSTANT Utf8[1] ("java/io/PrintStream")

32) CONSTANT Utf8[1] ("println")

33) CONSTANT Ut£f8[1] (" (Ljava/lang/String;)V")

33)




-[é University at Buffalo The State University of New York ' REACHING OTHERS

Java Bytecode Assembly

Popular one is called Jasmin

.method foo()V
Jimit locals 1
; declare variable O as an "int Count;"
; whose scope is the code between Labell and Label2
.var 0 is Count I from Labell to Label2

Labell:
bipush 10
i1store_0O

Label2:
return

.end method




% University at Buffalo The State University of New York | REACHING OTHERS

Dalvik Executable (.dex)

.class .dex

Mogc o m Mogic ecioom
Version of Class File Formal Checksum

SHA-1 Signature
ofher

Constant Pool

Access Flags
This Class
Super Class
Interfaces

Fields

Attributes




-[é University at Buffalo The State University of New York ' REACHING OTHERS

Decompiling .dex

Smali
- https://code.google.com/p/smali/
Soot
- http://www.sable.mcgill.ca/soot/




-[é University at Buffalo The State University of New York ' REACHING OTHERS

Questions

What is the bytecode format?
How to execute bytecode?
(Tangential) How to manage memory?




-[é University at Buffalo The State University of New York ' REACHING OTHERS

Compile/Runtime Support

Ahead-of-time compile

- C/C++, etc.

- Generating machine-dependent binaries
(Pure) Interpretation

- Probably no popular example

- Interpreting on-the-go

Just-in-time compile

- Don’t interpret every time, but generate machine
code at runtime and keep it for later.




-[é University at Buffalo The State University of New York ' REACHING OTHERS

How to JIT

A large design space

- When? Installation, launch, method invoke, etc.
- What? Everything, instruction, method, etc.
Dalvik: Trace-based JIT

- Only compile “hot” paths (typically under 10% of
the code)

- Good for performance/memory footprint, bad for
optimization (loses optimization opportunities)

ART: Installation-time JIT at the method granularity




% University at Buffalo The State University of New York ' REACHING OTHERS

Dalvik JIT

Interpret until
next potential
trace head

o

Update profile
count for this
location

|

Interpret/build
trace request

Submit compilation
request

Compiler T@

Dalvik Trace JIT Flow

Translation Cache

Xlation
exists?

Install new
translation

Translation
Translation

Exit 0

Exit 0 Exit 1

Translation

o—




-[é University at Buffalo The State University of New York ' REACHING OTHERS

.odex

During installation, Dalvik performs some
optimization on the bytecode itself.

Dalvik generates .odex file for each app at
installation time.

- Static linking

- Method in-lining

- Removal of empty methods
- Etc.




-[é University at Buffalo The State University of New York ' REACHING OTHERS

Questions

What is the bytecode format?
How to execute bytecode?
(Tangential) How to manage memory?




% University at Buffalo The State University of New York REACHING OTHERS

Zygote heap

Maps dex file Browser

(shared dirty,
copy-on-write; (mmap()ed) Browser dex file

\ Home
rarely written)

Maps live code (mmap()ed) Home dex file
and heap

Browser live (mmap()ed)

core library dex (private dirty) code and heap
files

| _ _ Home live code
shared from (private dirty) and heap

Zygote |

(mmap()ed)

shared from (private dirty)
Zygote

shared from

"live" core Zygote
libraries

(shared dirty;
read-only)




% University at Buffalo The State University of New York ' REACHING OTHERS

Typical Memory Structure

0xCco000000 == TASK_SIZE
} Random stack offset

Stack (grows down)
RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

T:T brk

Heap start_brk
Random brk offset

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment end_data
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”; start data

Text segment (ELF) end_code
Stores the binary image of the process (e.g., /bin/gonzo) 0x08648000

2]




-[é University at Buffalo The State University of New York ' REACHING OTHERS

Heap Management in Dalvik

Used for dynamic memory requests

In Java, there’s no free(), so allocation/deallocation
is automatically done by VM.

GC (Garbage Collection) is used.

- A stop-all method: Suspends the app execution,
scans the whole heap, and runs the GC algorithm




% University at Buffalo The State University of New York ' REACHING OTHERS

Dalvik GC

Mark and sweep

void mark (Object p) { void sweep () {
if (!p.marked) { for each p 1n heap
p.marked = true; if (p.marked)
for each Object q referenced by p p.marked = false;
mark(q); else
heap.release(p);




-[é University at Buffalo The State University of New York ' REACHING OTHERS

Summary

What is the bytecode format?

- Dalvik Executable (.dex)

How to execute bytecode?

- Trace-based JIT

(Tangential) How to manage memory?
- Sharing with Zygote & GC




