
Paxos

Karthik Dantu and Steve Ko

Administrivia

•  Assignment 3 is out, due next Monday.

Today: Paxos

•  Resources:
•  Part-Time Parliament:

http://research.microsoft.com/en-us/um/
people/lamport/pubs/lamport-paxos.pdf

•  Paxos Made Moderately Complex:
http://www.cs.cornell.edu/courses/
cs7412/2011sp/paxos.pdf

•  My lectures:
http://www.cse.buffalo.edu/~stevko/courses/
cse486/spring14/

Paxos Assumptions & Goals

•  The network is asynchronous with message delays.
•  The network can lose or duplicate messages, but

cannot corrupt them.
•  Processes can crash.
•  Processes are non-Byzantine (only crash-stop).
•  Processes have permanent storage.
•  Processes can propose values.

•  The goal: every process agrees on a value out of the
proposed values.

Desired Properties

Safety
•  Only a value that has been proposed can be

chosen
•  Only a single value is chosen
•  A process never learns that a value has been

chosen unless it has been
Liveness

•  Some proposed value is eventually chosen
•  If a value is chosen, a process eventually learns it

Three Roles of a Process

Proposers: processes that propose values
Acceptors: processes that accept (i.e., consider)

values
•  “Considering a value”: the value is a candidate

for consensus.
•  Majority acceptance à choosing the value

Learners: processes that learn the outcome (i.e.,
chosen value)

Three Roles of a Process

In reality, a process can be any one, two, or all three.
Important requirements

•  The protocol should work under process failures
and with delayed and lost messages.

•  The consensus is reached via a majority (> ½).
Example: a replicated state machine

•  All replicas agree on the order of execution for
concurrent transactions

•  All replica assume all roles, i.e., they can each
propose, accept, and learn.

Paxos Protocol Overview

A proposal should have an ID.
•  (proposal #, value) == (N, V)
•  The proposal # strictly increasing and globally

unique across all proposers
Three phases

•  Prepare phase: a proposer learns previously-
accepted proposals from the acceptors.

•  Propose phase: a proposer sends out a proposal.
•  Learn phase: learners learn the outcome.

Paxos Phase 1

A proposer chooses its proposal number N and sends a
prepare request to acceptors.
•  “Hey, have you accepted any proposal yet?”

An acceptor needs to reply:
•  If it accepted anything, the accepted proposal

and its value with the highest proposal number
less than N

•  A promise to not accept any proposal numbered
less than N any more (to make sure that it
doesn’t alter the result of the reply).

Paxos Phase 2

If a proposer receives a reply from a majority, it sends
an accept request with the proposal (N, V).
•  V: the value from the highest proposal number N

from the replies (i.e., the accepted proposals
returned from acceptors in phase 1)

•  Or, if no accepted proposal was returned in
phase 1, a new value to propose.

Upon receiving (N, V), acceptors either:
•  Accept it
•  Or, reject it if there was another prepare request

with N’ higher than N, and it replied to it.

Paxos Phase 3

Learners need to know which value has been chosen.
Many possibilities
One way: have each acceptor respond to all learners

•  Might be effective, but expensive
Another way: elect a “distinguished learner”

•  Acceptors respond with their acceptances to this
process

•  This distinguished learner informs other learners.
•  Failure-prone

Mixing the two: a set of distinguished learners

Problem: Progress (Liveness)

•  There’s a race condition for proposals.
•  P0 completes phase 1 with a proposal number N0
•  Before P0 starts phase 2, P1 starts and completes

phase 1 with a proposal number N1 > N0.
•  P0 performs phase 2, acceptors reject.
•  Before P1 starts phase 2, P0 restarts and completes

phase 1 with a proposal number N2 > N1.
•  P1 performs phase 2, acceptors reject.
•  …(this can go on forever)

Providing Liveness

•  Solution: elect a distinguished proposer
•  I.e., have only one proposer

•  If the distinguished proposer can successfully
communicate with a majority, the protocol
guarantees liveness.
•  I.e., if a process plays all three roles, Paxos can

tolerate failures f < 1/2 * N.
•  Still needs to get around FLP for the leader election,

e.g., having a failure detector

Multi-Paxos

•  In practice, single-decree Paxos is often not used.
•  Multi-decree Paxos: Paxos for a sequence of values

•  One possibility: single Paxos instance for each
value

•  Other possibilities exist.

Practical Application

•  Scenario: Replicated Web servers
•  How would you run Paxos to replicated Web servers?

•  What’s the problem?
•  One possibility

•  Each replica has “request slots” to fill.
•  A client communicates with one replica.
•  That replica becomes a proposer.
•  Run multi-Paxos to fill each request slot with a

request.
•  Liveness?

Summary

•  Paxos
•  A consensus algorithm
•  Handles crash-stop failures (f < 1/2 * N)

•  Three phases
•  Phase 1: prepare request/reply
•  Phase 2: accept request/reply
•  Phase 3: learning of the chosen value

