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Chapter 2 
 
Basics of  
Algorithm Analysis 

Slides by Kevin Wayne. 
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Announcements: 
Office hours: 
 Prof. Brian Ziebart 
  1108 SEO 
  3-5pm Wednesdays 
 
 Wei Xing 
  1310 SEO 
  1:30-5:30pm Tuesdays 
 
Enrollment: A few seats are now open.  Please 
email me (bziebart@uic.edu) if you are still unable 
to register. 

mailto:bziebart@uic.edu


2.1  Computational Tractability 

"For me, great algorithms are the 
poetry of computation. Just like 
verse, they can be terse, allusive, 
dense, and even mysterious. But 
once unlocked, they cast a 
brilliant new light on some aspect 
of computing."  -  Francis Sullivan 



4 

Computational Tractability 

 

 

Charles Babbage (1864) 

As soon as an Analytic Engine exists, it will necessarily 

guide the future course of the science.  Whenever any 

result is sought by its aid, the question will arise - By 

what course of calculation can these results be arrived at 

by the machine in the shortest time?  - Charles Babbage 

Analytic Engine (schematic) 



5 

Computational Tractability 

How fast is the algorithm? 
Even for identical inputs, it will depend on: 
• The clock speed of the processor 
• The data structure implementation 
• The instruction set of the processor / compiler 
• The speed/size of the memory hierarchy 
• Branch prediction in the processor 
• And many other variables we’d rather not think about… 

 
 
 Can we characterize 

algorithm speed without 
the infrastructure 
specifics?  
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[Non-]Polynomial-Time 

Brute force.  For many non-trivial problems, there is a 
natural brute force search algorithm that checks every 
possible solution. 
 Typically takes 2N time or worse for inputs of size N. 
 Unacceptable in practice. 

 
 
Desirable scaling property.  When the input size doubles, 
the algorithm should only slow down by some constant 
factor.  
 
 
 
 
 
Def.  An algorithm is poly-time if the above scaling 
property holds. 

There exists constants c > 0 and d > 0 such that on every 

input of size N, its running time is bounded by c Nd steps. 

choose C = 2d  
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Different Types of Analysis 

Worst case running time.  Obtain bound on largest possible 
running time of algorithm on input of a given size N. 
 Generally captures efficiency in practice. 
 Draconian view, but hard to find effective alternative.  
 

Average case running time.  Obtain bound on running time of 
algorithm on random input as a function of input size N. 
 Hard (or impossible) to accurately model real instances by 

random distributions. 
 Algorithm tuned for a certain distribution may perform 

poorly on other inputs. 
 

Smoothed case running time.  Obtain bound on largest 
possible running time of algorithm on random perturbation 
of any input as a function of input size N.. 
 Interpolates between the worst and average case 
 Very hard to compute 
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Worst-Case Polynomial-Time 

Def.  Algorithm is efficient if its running time is polynomial. 
 
Justification:  It really works in practice! 
 Although 6.02  1023  N20 is technically poly-time, it would 

be useless in practice. 
 In practice, the poly-time algorithms that people develop 

almost always have low constants and low exponents. 
 Breaking through the exponential barrier of brute force 

typically exposes some crucial structure of the problem. 
 

Exceptions. 
 Some poly-time algorithms do have high constants and/or 

exponents, and are useless in practice. 
 Some exponential-time (or worse) algorithms are widely 

used because the worst-case instances seem to be rare. 

simplex method 
Unix grep 
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Why It Matters 



2.2  Asymptotic Order of Growth 
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Asymptotic Order of Growth 

Upper bounds.  T(n) is O(f(n)) if there exist constants c > 0 
and n0  0 such that for all n  n0 we have T(n)  c · f(n). 
 
Lower bounds.  T(n) is (f(n)) if there exist constants c > 0 
and n0  0 such that for all n  n0 we have T(n)  c · f(n). 
 
Tight bounds.  T(n) is (f(n)) if T(n) is both O(f(n)) and 
(f(n)). 
 
Ex:   T(n) = 32n2 + 17n + 32. 
 T(n) is O(n2), O(n3), (n2), (n), and (n2) . 
 T(n) is not O(n), (n3), (n), or (n3). 

What can we say about T(n) = 15n! order of growth? 
What can we say about T(n) = log (n!)? 


