
1

Chapter 2

Basics of
Algorithm Analysis

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Announcements:
Office hours:
 Prof. Brian Ziebart
 1108 SEO
 3-5pm Wednesdays

 Wei Xing
 1310 SEO
 1:30-5:30pm Tuesdays

Enrollment: A few seats are now open. Please
email me (bziebart@uic.edu) if you are still unable
to register.

mailto:bziebart@uic.edu

2.1 Computational Tractability

"For me, great algorithms are the
poetry of computation. Just like
verse, they can be terse, allusive,
dense, and even mysterious. But
once unlocked, they cast a
brilliant new light on some aspect
of computing." - Francis Sullivan

4

Computational Tractability

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily

guide the future course of the science. Whenever any

result is sought by its aid, the question will arise - By

what course of calculation can these results be arrived at

by the machine in the shortest time? - Charles Babbage

Analytic Engine (schematic)

5

Computational Tractability

How fast is the algorithm?
Even for identical inputs, it will depend on:
• The clock speed of the processor
• The data structure implementation
• The instruction set of the processor / compiler
• The speed/size of the memory hierarchy
• Branch prediction in the processor
• And many other variables we’d rather not think about…

 Can we characterize

algorithm speed without
the infrastructure
specifics?

6

[Non-]Polynomial-Time

Brute force. For many non-trivial problems, there is a
natural brute force search algorithm that checks every
possible solution.
 Typically takes 2N time or worse for inputs of size N.
 Unacceptable in practice.

Desirable scaling property. When the input size doubles,
the algorithm should only slow down by some constant
factor.

Def. An algorithm is poly-time if the above scaling
property holds.

There exists constants c > 0 and d > 0 such that on every

input of size N, its running time is bounded by c Nd steps.

choose C = 2d

7

Different Types of Analysis

Worst case running time. Obtain bound on largest possible
running time of algorithm on input of a given size N.
 Generally captures efficiency in practice.
 Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of
algorithm on random input as a function of input size N.
 Hard (or impossible) to accurately model real instances by

random distributions.
 Algorithm tuned for a certain distribution may perform

poorly on other inputs.

Smoothed case running time. Obtain bound on largest
possible running time of algorithm on random perturbation
of any input as a function of input size N..
 Interpolates between the worst and average case
 Very hard to compute

8

Worst-Case Polynomial-Time

Def. Algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
 Although 6.02  1023  N20 is technically poly-time, it would

be useless in practice.
 In practice, the poly-time algorithms that people develop

almost always have low constants and low exponents.
 Breaking through the exponential barrier of brute force

typically exposes some crucial structure of the problem.

Exceptions.
 Some poly-time algorithms do have high constants and/or

exponents, and are useless in practice.
 Some exponential-time (or worse) algorithms are widely

used because the worst-case instances seem to be rare.

simplex method
Unix grep

9

Why It Matters

2.2 Asymptotic Order of Growth

11

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0
and n0  0 such that for all n  n0 we have T(n)  c · f(n).

Lower bounds. T(n) is (f(n)) if there exist constants c > 0
and n0  0 such that for all n  n0 we have T(n)  c · f(n).

Tight bounds. T(n) is (f(n)) if T(n) is both O(f(n)) and
(f(n)).

Ex: T(n) = 32n2 + 17n + 32.
 T(n) is O(n2), O(n3), (n2), (n), and (n2) .
 T(n) is not O(n), (n3), (n), or (n3).

What can we say about T(n) = 15n! order of growth?
What can we say about T(n) = log (n!)?

