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Goals 

Understand that sometimes greed is good optimal! 
 
Be able to analyze whether a greedy algorithm is optimal 
• show it “stays ahead” of any other algorithm 
• inductively 
• lower bound the optimal solution, show that greedy 

achieves this bound 
• exchangability and other problem structure 
 
Problems: 
• Interval scheduling 
• Coin changing 
• Optimal caching 
• Shortest path 
• Minimum spanning tree 
 



4.2  Scheduling to Minimize Lateness 
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Scheduling to Minimizing Lateness 

Minimizing lateness problem. 
 Single resource processes one job at a time. 
 Job j requires tj units of processing time and is 

due at time dj. 
 If j starts at time sj, it finishes at time fj = sj + tj.  
 Lateness:  j = max { 0,  fj - dj }. 
 Goal:  schedule all jobs to minimize maximum 

lateness L = max j. 
 

 

Ex: 
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Minimizing Lateness:  Greedy Algorithms 

Greedy template.  Consider jobs in some order.  
 
 [Shortest processing time first]  Consider jobs in 

ascending order of processing time tj. 
 
 

 [Earliest deadline first]  Consider jobs in ascending 
order of deadline dj. 
 
 

 [Smallest slack]  Consider jobs in ascending order 
of slack dj - tj. 
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Greedy template.  Consider jobs in some order.  
 
 [Shortest processing time first]  Consider jobs in 

ascending order of processing time tj. 
 
 
 
 
 
 

 [Smallest slack]  Consider jobs in ascending order 
of slack dj - tj. 
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Minimizing Lateness:  Greedy Algorithms 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9 

max lateness = 1 

Sort n jobs by deadline so that d1  d2  …  dn 

 

t  0 

for j = 1 to n 

   Assign job j to interval [t, t + tj] 

   sj  t, fj  t + tj 
   t  t + tj 

output intervals [sj, fj] 

Minimizing Lateness:  Greedy Algorithm 

Greedy algorithm.  Earliest deadline first. 
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Minimizing Lateness: No Idle Time 

Observation.  There exists an optimal schedule with 
no idle time. 
 
 
 
 
 
 
 
 
Observation. The greedy schedule has no idle time. 
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Minimizing Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j 
such that: i < j but j scheduled before i. 

 
 
 
 
 
Observation.  Greedy schedule has no inversions. 
 
Observation.  If a schedule (with no idle time) has an 
inversion, it has one with a pair of inverted jobs 
scheduled consecutively. 
 

i j before swap 

inversion 
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Minimizing Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j 
such that:  i < j but j scheduled before i. 

 
 
 
 
 
Claim.  Swapping two adjacent, inverted jobs reduces 
the number of inversions by one and does not increase 
the max lateness. 

 
Pf.  Let   be the lateness before the swap, and let  ' 
be it afterwards. 
 'k = k for all k  i, j 
 'i  i  
 If job j is late: 
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Minimizing Lateness: Analysis of Greedy 
Algorithm 

Theorem.  Greedy schedule S is optimal. 
 
Pf. (contradiction) Define S* to be an optimal 
schedule that has the fewest number of inversions, 
and let's see what happens. 
 Can assume S* has no idle time. 
 If S* has no inversions, then S = S*. 
 If S* has an inversion, let i-j be an adjacent 

inversion. 
– swapping i and j does not increase the maximum 
lateness and strictly decreases the number of 
inversions 

– this contradicts definition of S*  ▪ 
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Greedy Analysis Strategies 

Greedy algorithm stays ahead.  Show that after each 
step of the greedy algorithm, its solution is at least 
as good as any other algorithm's.  
 
Exchange argument.  Gradually transform any solution 
to the one found by the greedy algorithm without 
hurting its quality. 
 
Structural.  Discover a simple "structural" bound 
asserting that every possible solution must have a 
certain value. Then show that your algorithm always 
achieves this bound. 
 

 



4.4  Shortest Paths in a Graph 

shortest path from Princeton CS department to Einstein's house 
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Shortest Path Problem 

Shortest path network. 
 Directed graph G = (V, E). 
 Source s, destination t. 
 Length e = length of edge e. 

 
Shortest path problem:  find shortest directed path 
from s to t. 

 

 

 

Cost of path s-2-3-5-t 
     =  9 + 23 + 2 + 16 
     = 48. 
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Dijkstra's Algorithm 

Dijkstra's algorithm. 
 Maintain a set of explored nodes S for which we have 

determined the shortest path distance d(u) from s to u. 
 Initialize S = { s }, d(s) = 0. 
 Repeatedly choose unexplored node v which minimizes 

 
 
add v to S, and set d(v) = (v). 
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shortest path to some u in explored 
part, followed by a single edge (u, v) 



16 

Dijkstra's Algorithm 

Dijkstra's algorithm. 
 Maintain a set of explored nodes S for which we have 

determined the shortest path distance d(u) from s to u. 
 Initialize S = { s }, d(s) = 0. 
 Repeatedly choose unexplored node v which minimizes 

 
 
add v to S, and set d(v) = (v). 
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Dijkstra's Algorithm:  Implementation 

For each unexplored node, explicitly maintain  
 
 Next node to explore = node with minimum (v). 
 When exploring v, for each incident edge e = (v, w), update 

 
 

Efficient implementation.  Maintain a priority queue of 
unexplored nodes, prioritized by (v). 

†  Individual ops are amortized bounds 

PQ Operation 

Insert 

ExtractMin 

ChangeKey 

Binary heap 

log n 

log n 

log n 

Fib heap † 

1 

log n 

1 

Array 

n 

n 

1 

IsEmpty 1 1 1 

Priority Queue 

Total m log n m + n log n n2 

Dijkstra 
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d log d n 

log d n 
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

(v)  min
e  (u,v) : uS

d(u)  e  .



(w)  min { (w),  (v) e }.
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Dijkstra's Shortest Path Algorithm 

Find shortest path from s to t. 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Algorithm:  Proof of Correctness 

Invariant.  For each node u  S, d(u) is the length of the shortest s-u path. 
Pf.  (by induction on |S|) 
Base case:  |S| = 1 is trivial. 
Inductive hypothesis:  Assume true for |S| = k    1. 

 Let v be next node added to S, and let u-v be the chosen edge. 
 The shortest s-u path plus (u, v) is an s-v path of length (v). 
 Consider any s-v path P. We'll see that it's no shorter than (v). 
 Let x-y be the first edge in P that leaves S, 

and let P' be the subpath to x. 
 P is already too long as soon as it leaves S. 

 

  (P)    (P') +  (x,y)    d(x) +  (x, y)    (y)    (v) 

nonnegative 
weights 

inductive 
hypothesis 

defn of (y) Dijkstra chose v 
instead of y 
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