Yty

JON KLEINBERG - EVA TARDOS

Chapter 4

Greedy
Algorithms,
Part 2

PEARSON Slides by Kevin Wayne.

Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

Goals

Understand that sometimes greed is geed optimall

Be able to analyze whether a greedy algorithm is optimal

« show it "stays ahead" of any other algorithm

* inductively

* lower bound the optimal solution, show that greedy
achieves this bound

 exchangability and other problem structure

Problems:

« Interval scheduling
Coin changing

Optimal caching
Shortest path
Minimum spanning tree

4.2 Scheduling to Minimize Lateness

Scheduling to Minimizing Lateness

Minimizing lateness problem.

. Single resource processes one job at a time.

» Job j requires t; units of processing fime and is
due at time d;.

. If j starts at'time s;, it finishes at time fi=s;+tj

. Lateness: /. = max {JO f d }.

. Goal: schedule all jobs t6 minimize maximum
lateness L = max /.

IIIIIH
Ex BN :
s s 14 15
lateness = 2 lateness = 0 max lateness = 6
| | |
=9 d,=8 d, =15 d =6 ds = 14 d,=9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.
. [Shortest processing time first] Consider jobs in
ascending order of processing time t;.

. [Earliest deadline first] Consider jobs in ascending
order of deadline d;.

. [Smallest slack] Consider jobs in ascending order
of slack d; - ;.

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

. [Shortest processing time first] Consider jobs in
ascending order of processing time t;.

counterexample

. [Smallest slack] Consider jobs in ascending order

of slack d; - ;.
S counterexample

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

Sort n jobs by deadline so that d, < d, < .. < d

- n

t <« O

for j =1 ton
Assign job j to interval [t, t + t,]
s; <« t, fj «— t + t
t« t + t

output intervals [s;, £;]

max lateness = 1

|
d1:6 d2:8 d3:9 d4:9 d5:14 d6=15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with
no idle time.

d=4 d=6 d=12

0 1 2 3 4 5 6 7 8 9 10 1

Observation. The greedy schedule has no idle time.

Minimizing Lateness: Inversions

Def. Aninversion in schedule S is a pair of jobsiand j
such that: i< jbut jscheduled beforei.

inversion

! |

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an
inversion, it has one with a pair of inverted jobs
scheduled consecutively.

Minimizing Lateness: Inversions

Def. Aninversion in schedule S is a pair of jobsiand j
such that: i< jbut jscheduled beforei.

inversion

I 1 fi
before swap R
after swap iy

fs
Claim. Swapping two adjacent, inverted jobs reduces
the number of inversions by one and does not increase

the max lateness.

Pf. Let ¢/ be the lateness before the swap, and let 7
be it afferwards.

0. = fl-d, (definition)
g k2 =l forall k=i, j =0 _ 2 dJJ (J finishes at time 7)
€ < f-d (7 < Jj)
I JOb j is late: < (definition)

10

Minimizing Lateness: Analysis of Greedy
Algorithm

Theorem. Greedy schedule S is optimal.

Pf. (contradiction) Define S* to be an optimal
schedule that has the fewest number of inversions,
and let's see what happens.
. Can assume S* has no idle time.
. If S* has no inversions, then S = S*.
. If S* has an inversion, let i-j be an adjacent
iInversion.

- swapping i and j does not increase the maximum
lateness and strictly decreases the number of
inversions

- this contradicts definition of S* =

1

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each
step of the greedy algorithm, its solution is at least
as good as any other algorithm's.

Exchange argument. Gradually transform any solution
to the one found by the greedy algorithm without
hurting its quality.

Structural. Discover a simple "structural" bound
asserting that every possible solution must have a
certain value. Then show that your algorithm always
achieves this bound.

12

-Princeton Vi o
e 2 B sk % %%
L] E Gl i -
ot e = il b 1
r%.g e o \:(aﬂ“‘““ e g% Eh! H am\\)“m‘s% g Q
3 i [
é:Dr 4 L@Q‘\ Crmy St Py o s h B,
& o - % = g @, L
o 3 % %, PRNCETON g ST 'Y
e B e 0 3 CEMETERY. % LTl % 2
o 4 Princetari, ' % o & = ?’5
& 4 JCemeten % 2) 2T g A 4]
=l & pd E %5 %% % L
B . =
i % e e B 77 % = %% i
[:2
i A Y
Cleyeland R 4 o ™ pattt Sy %3-‘91*‘“ ?awx\"‘\'ﬁ %
o 7 H\ﬁd‘ =7 = & §
2 s SFd %
5 R ot \“3‘“5\ B P
£y " Merder o ® =57
L) =t
e Counfy,
931 %O\fs gﬂunicipal Court 3
B aN 629
o & 2 % £
Sy [:4 gl 2
g i %
b 5 PRINCETOMN = 5
@ @‘;\Q‘ % %,
o] - UHNIYERSITY W e iy
‘\?‘b % i(?:le
of
&5 & k| = Wt
o [&
£ b 5 % a
f&é' o i =
L o
.)
&
o7
G, \3@@ %, 57
% "
2 % > oy B
x E: £ ot
F & %
§° 4 S SPRINGDALE
= &
< % & i—?%»p GOLF CLUB
) & &

shortest path from Princeton CS department to Einstein's house

Shortest Path Problem

Shortest path network.

. Directed graph 6 = (V, E).

. Source s, destination t.

. Length /, = length of edge e.

Shortest path problem: find shortest directed path
from s to t. T

cost of path = sum of edge costs in path

9/'@ 23
” 18 Cost of path s-2-3-5-1
\g(2 6 = 9+23+2+16
11
15 5
6
NL}

14

Dijkstra's Algorithm

Dijkstra's algorithm.

. Maintain a set of explored nodes S for which we have
determined the shortest path distance d(u) from s to u.

. Initialize S={s},d(s) = 0.

. Repeatedly choose unexplored node v which minimizes

z(v)= min d(u)+/,,
e=(u,v):ues

Gdd vto S C(nd set d(v) = TC(V). \ shortest path to some u in explored
! part, followed by a single edge (u, v)

15

Dijkstra's Algorithm

Dijkstra's algorithm.

. Maintain a set of explored nodes S for which we have
determined the shortest path distance d(u) from s to u.

. Initialize S={s},d(s) = 0.

. Repeatedly choose unexplored node v which minimizes

z(v)= min d(u)+/¢,,
e=(u,v):ues

Gdd vto S C(nd set d(v) = TC(V). \ shortest path to some u in explored
! part, followed by a single edge (u, v)

16

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain #(v)= min d(u)+/, .

e=(uVv):uesS

. Next node to explore = node with minimum n(v).
. When exploring v, for each incident edge e = (v, w), update

a(w)=min { 7(w), 7()+L,}.

Efficient implementation. Maintain a priority queue of
unexplored nodes, prioritized by n(v).

PQ Oper‘a‘rlon Binary heap | d-way Heap | Fib heap T

n log n dlogyn
T
DR : o o
Total n2 m log n mlog ,/sn mMm+nlogn

T Individual ops are amortized bounds

17

Dijkstra's Shortest Path Algorithm

Find shortest path from s to t.

Dijkstra's Shortest Path Algorithm

S={}
PQ={s,2,3,4,56,7,1}

(0 0)

18 /
14 00) £
(0 0]
30 00 1 19
15

° / 6

% © \\j

7 44 \J

distance label = ©

Dijkstra's Shortest Path Algorithm

S={}
PQ={s,2,3,4,56,7,1}

delmin
1 Q0
24

18
14
00) ¢
Q0
30
Q0 1 19
15
5
6
20 1

U 44
distance label = ©

20

Dijkstra's Shortest Path Algorithm

S={s}
PQ={2,3,4,56,7,t}

decrease key

S ©
, — @

14 % 14

30 00

15

20

=
distance label == » 15 *

21

Dijkstra's Shortest Path Algorithm

S={s}
PQ={2,3,4,56,7,t}

[delmin
o0

X 9
9 /'Cz\f

14 X 14

30 0
15
5
20
=

distance label == » 15 *

22

Dijkstra's Shortest Path Algorithm

S={s,2}
PQ={3,4,5,6,7,1}

Q0
30
[o') 1 19
15 ‘
5

23

Dijkstra's Shortest Path Algorithm

S={s,2}
PQ={3,4,5,6,7,1}

decrease key

X 33

Q0
30
[o') 1 19
15 ‘
5

6
20 16
\ VL
T

» 15 ©

24

Dijkstra's Shortest Path Algorithm

S={s,2}
PQ={3,4,5,6,7,1}

24 — 3
4 18
X 14
Q0
30 00 1 19
15 |
5

6
20 16
\ VL
T

» 15 ©

25

Dijkstra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm

N

3 15 4mm delmin o

Dijkstra's Shortest Path Algorithm

32
X 3%
24 >
2 6
44 35 »
30 X 1 19
6
20 16
N
44 2
59 X
2

Dijks’rra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm

delmin == 50 X 59 X

44

Dijkstra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm

$={s,2,3,4,56,7,1}
PQ={}

32
X 9 X 3%

9 /@ o4 —»{3)

14 X 14 , .
46 36 34 45 X |
30 X 1 19
15

U 44

37

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node u € S, d(u) is the length of the shortest s-u path.
Pf. (by induction on |S])
Base case: |S| =1 s trivial.
Inductive hypothesis: Assume true for |S| =k > 1.
. Let v be next node added to S, and let u-v be the chosen edge.
. The shortest s-u path plus (u, v) is an s-v path of length n(v).
. Consider any s-v path P. We'll see that it's no shorter than n(v).
. Let x-y be the first edge in P that leaves S,
and let P’ be the subpath to x.
. P is already too long as soon as it leaves S.

7 (P) Tzz (P') + 1 (xy) I dex) + ¢ (x, Y)IZ (y) I n(v)

nonnegative inductive defn of n(y) Dijkstra chose v
weights hypothesis instead of y

38

