
1

Chapter 4

Greedy
Algorithms,
Part 2

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Goals

Understand that sometimes greed is good optimal!

Be able to analyze whether a greedy algorithm is optimal
• show it “stays ahead” of any other algorithm
• inductively
• lower bound the optimal solution, show that greedy

achieves this bound
• exchangability and other problem structure

Problems:
• Interval scheduling
• Coin changing
• Optimal caching
• Shortest path
• Minimum spanning tree

4.2 Scheduling to Minimize Lateness

4

Scheduling to Minimizing Lateness

Minimizing lateness problem.
 Single resource processes one job at a time.
 Job j requires tj units of processing time and is

due at time dj.
 If j starts at time sj, it finishes at time fj = sj + tj.
 Lateness: j = max { 0, fj - dj }.
 Goal: schedule all jobs to minimize maximum

lateness L = max j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

lateness = 0 lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

5

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

 [Shortest processing time first] Consider jobs in

ascending order of processing time tj.

 [Earliest deadline first] Consider jobs in ascending
order of deadline dj.

 [Smallest slack] Consider jobs in ascending order
of slack dj - tj.

6

Greedy template. Consider jobs in some order.

 [Shortest processing time first] Consider jobs in

ascending order of processing time tj.

 [Smallest slack] Consider jobs in ascending order
of slack dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithms

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1  d2  …  dn

t  0

for j = 1 to n

 Assign job j to interval [t, t + tj]

 sj  t, fj  t + tj
 t  t + tj

output intervals [sj, fj]

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

8

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with
no idle time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

9

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j
such that: i < j but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an
inversion, it has one with a pair of inverted jobs
scheduled consecutively.

i j before swap

inversion

10

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j
such that: i < j but j scheduled before i.

Claim. Swapping two adjacent, inverted jobs reduces
the number of inversions by one and does not increase
the max lateness.

Pf. Let  be the lateness before the swap, and let  '
be it afterwards.
 'k = k for all k  i, j
 'i  i
 If job j is late:

i j

i j

before swap

after swap

n)(definitio

)(

) time at finishes (

n)(definitio

i

ii

iji

jjj

jidf

fjdf

df













f'j

fi
inversion

11

Minimizing Lateness: Analysis of Greedy
Algorithm

Theorem. Greedy schedule S is optimal.

Pf. (contradiction) Define S* to be an optimal
schedule that has the fewest number of inversions,
and let's see what happens.
 Can assume S* has no idle time.
 If S* has no inversions, then S = S*.
 If S* has an inversion, let i-j be an adjacent

inversion.
– swapping i and j does not increase the maximum
lateness and strictly decreases the number of
inversions

– this contradicts definition of S* ▪

12

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each
step of the greedy algorithm, its solution is at least
as good as any other algorithm's.

Exchange argument. Gradually transform any solution
to the one found by the greedy algorithm without
hurting its quality.

Structural. Discover a simple "structural" bound
asserting that every possible solution must have a
certain value. Then show that your algorithm always
achieves this bound.

4.4 Shortest Paths in a Graph

shortest path from Princeton CS department to Einstein's house

14

Shortest Path Problem

Shortest path network.
 Directed graph G = (V, E).
 Source s, destination t.
 Length e = length of edge e.

Shortest path problem: find shortest directed path
from s to t.

Cost of path s-2-3-5-t
 = 9 + 23 + 2 + 16
 = 48.

s

3

t

2

6

7

4

5

 23

 18

 2

 9

 14

 15 5

 30

 20

 44

 16

 11

 6

 19

 6

cost of path = sum of edge costs in path

15

Dijkstra's Algorithm

Dijkstra's algorithm.
 Maintain a set of explored nodes S for which we have

determined the shortest path distance d(u) from s to u.
 Initialize S = { s }, d(s) = 0.
 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

,)(min)(
:),(

e
Suvue

udv 




s

v

u

d(u)

S

e

shortest path to some u in explored
part, followed by a single edge (u, v)

16

Dijkstra's Algorithm

Dijkstra's algorithm.
 Maintain a set of explored nodes S for which we have

determined the shortest path distance d(u) from s to u.
 Initialize S = { s }, d(s) = 0.
 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

s

v

u

d(u)

S

e

,)(min)(
:),(

e
Suvue

udv 




shortest path to some u in explored
part, followed by a single edge (u, v)

17

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain

 Next node to explore = node with minimum (v).
 When exploring v, for each incident edge e = (v, w), update

Efficient implementation. Maintain a priority queue of
unexplored nodes, prioritized by (v).

† Individual ops are amortized bounds

PQ Operation

Insert

ExtractMin

ChangeKey

Binary heap

log n

log n

log n

Fib heap †

1

log n

1

Array

n

n

1

IsEmpty 1 1 1

Priority Queue

Total m log n m + n log n n2

Dijkstra

n

n

m

n

d-way Heap

d log d n

d log d n

log d n

1

m log m/n n



(v)  min
e  (u,v) : uS

d(u)  e .



(w)  min { (w), (v) e }.

18

Dijkstra's Shortest Path Algorithm

Find shortest path from s to t.

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

19

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 

 
 

 

 

 

 

 0

 distance label

S = { }

PQ = { s, 2, 3, 4, 5, 6, 7, t }

20

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 

 
 

 

 

 

 

 0

 distance label

S = { }

PQ = { s, 2, 3, 4, 5, 6, 7, t }

delmin

21

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

 distance label

S = { s }

PQ = { 2, 3, 4, 5, 6, 7, t }

decrease key

  X

 

  X

X

22

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

 distance label

S = { s }

PQ = { 2, 3, 4, 5, 6, 7, t }

  X

 

  X

X

delmin

Dijkstra's Shortest Path Algorithm

23

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2 }

PQ = { 3, 4, 5, 6, 7, t }

  X

 

  X

X

Dijkstra's Shortest Path Algorithm

24

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2 }

PQ = { 3, 4, 5, 6, 7, t }

  X

 

  X

X

decrease key

X 33

Dijkstra's Shortest Path Algorithm

25

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2 }

PQ = { 3, 4, 5, 6, 7, t }

  X

 

  X

X

X 33

delmin

Dijkstra's Shortest Path Algorithm

26

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9
 

 

 

 14

 

 0

S = { s, 2, 6 }

PQ = { 3, 4, 5, 7, t }

  X

 

  X

X

X 33

 44
X

X

 32

Dijkstra's Shortest Path Algorithm

27

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 

 

 14

 

 0

S = { s, 2, 6 }

PQ = { 3, 4, 5, 7, t }

  X

 

  X

X

 44
X

delmin

  X 33 X

 32

Dijkstra's Shortest Path Algorithm

28

s

3

t

2

6

7

4

5

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 

 

 14

 

 0

S = { s, 2, 6, 7 }

PQ = { 3, 4, 5, t }

  X

 

  X

X

 44
X

 35 X

 59 X

 24

  X 33 X

 32

Dijkstra's Shortest Path Algorithm

29

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 

 

 14

 

 0

S = { s, 2, 6, 7 }

PQ = { 3, 4, 5, t }

  X

 

  X

X

 44
X

 35 X

 59 X

delmin

  X 33 X

 32

Dijkstra's Shortest Path Algorithm

30

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 

 

 14

 

 0

S = { s, 2, 3, 6, 7 }

PQ = { 4, 5, t }

  X

 

  X

X

 44
X

 35 X

 59 X X 51

X 34

  X 33 X

 32

Dijkstra's Shortest Path Algorithm

31

s

3

t

2

6

7

4

5

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 

 

 14

 

 0

S = { s, 2, 3, 6, 7 }

PQ = { 4, 5, t }

  X

 

  X

X

 44
X

 35 X

 59 X X 51

X 34

delmin

  X 33 X

 32

 24

Dijkstra's Shortest Path Algorithm

32

s

3

t

2

6

7

4

5

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 

 

 14

 

 0

S = { s, 2, 3, 5, 6, 7 }

PQ = { 4, t }

  X

 

  X

X

 44
X

 35 X

 59 X X 51

X 34

 24

X 50

X 45

  X 33 X

 32

Dijkstra's Shortest Path Algorithm

33

s

3

t

2

6

7

4

5

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 

 

 14

 

 0

S = { s, 2, 3, 5, 6, 7 }

PQ = { 4, t }

  X

 

  X

X

 44
X

 35 X

 59 X X 51

X 34

 24

X 50

X 45

delmin

  X 33 X

 32

Dijkstra's Shortest Path Algorithm

34

s

3

t

2

6

7

4

5

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 

 

 14

 

 0

S = { s, 2, 3, 4, 5, 6, 7 }

PQ = { t }

  X

 

  X

X

 44
X

 35 X

 59 X X 51

X 34

 24

X 50

X 45

  X 33 X

 32

Dijkstra's Shortest Path Algorithm

35

s

3

t

2

6

7

4

5

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 

 

 14

 

 0

S = { s, 2, 3, 4, 5, 6, 7 }

PQ = { t }

  X

 

  X

X

 44
X

 35 X

 59 X X 51

X 34

X 50

X 45

delmin

  X 33 X

 32

 24

Dijkstra's Shortest Path Algorithm

36

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 

 

 14

 

 0

S = { s, 2, 3, 4, 5, 6, 7, t }

PQ = { }

  X

 

  X

X

 44
X

 35 X

 59 X X 51

X 34

X 50

X 45

  X 33 X

 32

Dijkstra's Shortest Path Algorithm

37

s

3

t

2

6

7

4

5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 

 

 14

 

 0

S = { s, 2, 3, 4, 5, 6, 7, t }

PQ = { }

  X

 

  X

X

 44
X

 35 X

 59 X X 51

X 34

X 50

X 45

  X 33 X

 32

Dijkstra's Shortest Path Algorithm

38

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node u  S, d(u) is the length of the shortest s-u path.
Pf. (by induction on |S|)
Base case: |S| = 1 is trivial.
Inductive hypothesis: Assume true for |S| = k  1.

 Let v be next node added to S, and let u-v be the chosen edge.
 The shortest s-u path plus (u, v) is an s-v path of length (v).
 Consider any s-v path P. We'll see that it's no shorter than (v).
 Let x-y be the first edge in P that leaves S,

and let P' be the subpath to x.
 P is already too long as soon as it leaves S.

  (P)   (P') +  (x,y)  d(x) +  (x, y)  (y)  (v)

nonnegative
weights

inductive
hypothesis

defn of (y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'

