

CMPSC 465
Data Structures and Algorithms

Spring 2013

Exam I: Introduction to Asymptotic Analysis and Divide-and-Conquer

January 31, 2013

Name: __ Last 4 digits of ID: ____ ____ ____ ____

Honor Code Statement

I certify that I have not discussed the contents of the exam with any other student and I will not discuss the contents
of this exam with any student in this class before it is returned to me with a grade. I have not cheated on this exam in
any way, nor do I know of anyone else who has cheated.

Signature: ___

Directions/Notes:

• Write your ID on every page of this exam. Write your name just on this cover page.

• No outside notes, books, or calculators are permitted. However, you will be provided with a page giving a
few useful bits of information.

• Be sure to sign the honor code statement when you are finished.

• All questions on this exam are implicitly prefaced with “As taught in CMPSC 465 lectures this term.”

• Always justify your work and present solutions using the conventions taught in class.

• The problem that is a take-off on a challenge problem is on the last sheet of the exam. You must solve that
problem first and remove and turn in that page of your exam within the first 30 minutes of the exam period.
Due to the logistics of timing the challenge problem, if you arrive late without having made prior
arrangements with the instructor, you will either forfeit missed time or be permitted to earn only up to half
credit on the problem.

• Use pencil to complete this exam. Use of pen will result in an automatic 10-point deduction and we
reserve the right not to read any problem with cross-outs.

Score Breakdown:

1 2 3 4 5 6 7 8 9 A.P. Total

Score

Value 15 10 10 7 6 10 12 10 20 -- 100

CMPSC 465 Exam 1 – Spring 2013 – Page 2 Last 4 Digits of ID: ___ ___ ___ ___

1. Ranking Growth of Functions. Below are expressions that are functions of n. You have two jobs: First, as much as
possible, simplify each expression and write it in terms of Ο-notation. Second, rank the functions in terms of asymptotic
dominance. The fastest-growing function should be #1. If two functions grow at the same rate, they may share a ranking
and the next ranking should be skipped. (For example, if you had a tie for 3rd place, you’d have rankings 1, 2, 3, 3, 5, 6,
etc., but no 4.) [15 pts.]

function (and room for work) asymptotically
simplified form

ranking

nlog7n
5n

10i

i=0

n

∑

ni

i=0

50

∑

 π
e

3(nn – 3n)

35n2 +12n3

n(n+5)

3n + 150n

 150 ⋅3n

n3 + n

7
⎛
⎝⎜

⎞
⎠⎟

18

+ log12n+18n!

 12n log2 n+ n+18n2

 log7 n+12n5 − n3

 12(log2 n+1)

 log10 n+ 2013

log3 n+ n!
17

CMPSC 465 Exam 1 – Spring 2013 – Page 3 Last 4 Digits of ID: ___ ___ ___ ___

2. Sorting. [10 pts.]

 a. Illustrate a complete trace of a merge sort of the array below, following the style used in lecture:

b. What is the theoretically predicted running time of merge sort? _____________________
[This question is just a recall question. No explanation necessary.]

c. Consider this claim: “For any array of size n where n is particularly large, it is guaranteed that merge sort will

perform faster than insertion sort.” Is this claim true or false? If it’s true, give a rigorous argument why insertion
sort will always perform worse than what you’ve claimed above. If it’s false, describe the best scenario in which
insertion sort would do better than what you’ve claimed above and rigorously derive the running time.

index 1 2 3 4 5
value 92 81 103 72 31

CMPSC 465 Exam 1 – Spring 2013 – Page 4 Last 4 Digits of ID: ___ ___ ___ ___

3. Running Time of a Code Fragment. Consider the following code fragment: [10 pts.]
 b = 1
 for i = 1 to n + 1
 {
 a = 0
 for k = 2 to

i / 2⎢⎣ ⎥⎦

 {
 a = a + 1
 }
 b = b * (a + 5)
 }

In terms of n, how many additions and multiplications (total) are performed when this code is executed with an even
input of n? Simplify your result to a polynomial.

CMPSC 465 Exam 1 – Spring 2013 – Page 5 Last 4 Digits of ID: ___ ___ ___ ___

4. Order Notation. Using the formal definitions of order notation and theorems from class, prove the claims. [7 pts.]

a. When f (x) = 12x6 − 6x3 + 2x −15 and g (x) = x6, f (x) is O(g (x)).

b. When h(x) = 7x3 + 2x2 + 20 and g (x) is x3, h (x) is Ω(g (x)).

c. If we wanted to prove that h (x) from (b) is Θ(g (x)), what else would we need to do?

[Don’t actually prove this, but tell what you would do at a high level. This question is worth one point and it should
take you less than 30 seconds to write down your answer.]

5. Master Theorem. Using the Master Theorem, give (and explain) tight asymptotic bounds for each recurrence. [6 pts.]

a. T (n) = 3T (n/9) + n

b. T (n) = 8 T (n/2) + Θ(n2)

CMPSC 465 Exam 1 – Spring 2013 – Page 6 Last 4 Digits of ID: ___ ___ ___ ___

6. Closed Form of a Recurrence. Consider the following recurrence: [10 pts.]

a1 = 12
ak = 3a k /2⎢⎣ ⎥⎦

 for k ≥ 2

Using some form of induction and the formal proof style used in class and Epp, prove that the closed form of this
recurrence is an = 12 ⋅3 lg n⎢⎣ ⎥⎦ . To save time, you only need to prove the inductive step for odd values of k.

CMPSC 465 Exam 1 – Spring 2013 – Page 7 Last 4 Digits of ID: ___ ___ ___ ___

7. Designing an Algorithm. Consider an array A containing n distinct integers. We define a local minimum of A to be an x

such that x = A[i], for some 0 ≤ i < n, with A[i-1] > A[i] and A[i] < A[i+1]. In other words, a local minimum x is less than
its neighbors in A (for boundary elements, there is only one neighbor). We want to solve the problem of finding a local
minimum. Note that A might have multiple local minima, but you only need to locate and return one. [12 pts.]

 As an example, suppose A = [10, 6, 4, 3, 12, 19, 18]. Then A has two local minima: 3 and 18.

 a. Describe an algorithm using the divide and conquer mindset to solve this problem.

b. Express a recurrence for the running time of your algorithm. Explain why this recurrence fits. [If you are unable to
solve (a) and want some partial credit here, explain how to derive a recurrence from a divide-and-conquer algorithm
in general and draw a large “X” over your work in (a).]

CMPSC 465 Exam 1 – Spring 2013 – Page 8 Last 4 Digits of ID: ___ ___ ___ ___

8. Use a recursion tree to guess a bound for the closed form of the recurrence T(n) = 2T(n/5) + 3T(n/6) + cn that is as

accurate as possible. You do not need to prove your closed form correct. [10 pts.]

CMPSC 465 Exam 1 – Spring 2013 – Page 9 Last 4 Digits of ID: ___ ___ ___ ___

9. Algorithm Correctness [From Challenge Problem]. The following code fragment implements Horner’s rule for

evaluating a polynomial

 P(x) =

ak xk

k=0

n

∑

 = a0 + x(a1 + x(a2 + ...+ x(an−1 + xan)...))
	
 given the coefficients a0, a1, …. an and a value for x:
 y = 0
 for i = n downto 0
 y = ai + x· y [20 pts.]

 Note: This problem must be solved and turned in within the first 30 minutes of the exam period. Remove this sheet.

a. Consider the following loop invariant:
 At the start of each iteration of the for loop,

y = ak+i+1x

k

k=0

n−(i+1)

∑

 Interpret a summation with no terms as equaling 0. Prove the correctness of this algorithm.

 Initialization

 Maintenance

 Termination

CMPSC 465 Exam 1 – Spring 2013 – Page 10 Last 4 Digits of ID: ___ ___ ___ ___

b. What is the exact number of additions and multiplications performed by this code fragment? [Show work neatly.]

c. In Θ-notation, what is the running time?

Now consider the following pseudocode, which uses the same symbols as the problem statement and where methods have
preconditions that k ≥ 0 and n ≥ 0:

 EVAL-MONOMIAL(x, k)
 if k == 0
 return 1
 if k == 1
 return x
 else
 h =

k / 2⎢⎣ ⎥⎦

 b = EVAL-MONOMIAL(x, k mod 2)
 m = EVAL-MONOMIAL(x, h)
 return b ⋅m ⋅m

 EVAL-POLYNOMIAL(a[0..n], x, n)
 sum = 0
 for k == 0 to n
 sum = sum + a[k]⋅ EVAL-MONOMIAL(x, k)
 return sum

d. The book had you implement naïve polynomial evaluation, which ran in Θ(n2) time. How does the performance of

EVAL-POLYNOMIAL compare to naïve polynomial evaluation and Horner’s rule? Explain. You do not need a
rigorous argument, but should be able to see a bound on the running time of the above code and include that bound
in your explanation.

IMPORTANT NOTES:

• This last problem must be solved in the first 30 minutes of the exam period.
• Remove this sheet. Listen for time to be called to pass it in.
• Make sure the last 4-digits of your ID number on this sheet match the rest of your exam or you

will not get credit for this problem.
• Write the first letter (only) of your last name in the box to the right to assist us with sorting exams

while relatively maintaining anonymity during grading.

First Letter of
Last Name:

