CAS CS 210: COMPUTER SYSTEMS

Professor: Appavoo

- Objective: To provide the student with a fundamental understanding of how to computer systems work and are programmed.
- We will discuss the following in the first lecture:
 - What is a computer system?
 - Course Info, Piazza, Syllabus
 - Discussion and Quizzes
 - General advice.
 - If there is time a little about who I am and what I do

http://www.youtube.com/watch?v=yEP-pLvSdXs 6:5 |

http://www.youtube.com/watch?v=YhsKCnDD3F8

http://www.youtube.com/watch?v=CoxQLJkLq1c

First 1:30

SO WHAT IS A COMPUTER?

WHAT IS A SYSTEM?

"SYSTEM: an assemblage or combination of things or parts forming a complex or unitary whole ..."

WHAT ARE WE MISSING?

SOFTWARE!

WITHOUT IT...

SO WHAT IS SOFTWARE?

COMPUTER SYSTEM:

A rich and beautifully tapestry of **Interacting**

Hardware + Software components that are the substrate to our modern digital world

WELCOMETO CS210

- Course Objectives, Mechanics, and Syllabus
- Introduction to Computer Architecture (visible to programmer), and aspects of compilers and operating systems
- Not so much Computer Organization (not visible)

COURSE GOALS

- Understand components of computer systems
- Look under the hood
- Understand software / hardware interaction
- Understand design tradeoffs
- Use "real-world" examples to illustrate concepts

COURSE OBJECTIVES

- Understand assembly language
 - Intel architecture (IA32): x86, Pentium, ...
 - Able to understand other architectures quickly
- Understand how C programs execute
- Understand how data is represented and operators applied to it

OBJECTIVES CONTINUED

- Learn functional units and interfaces
 - Processor, memory, Input/Output
 - Software
 - Interfaces
- Understand major sources of performance, e.g., how to exploit locality in code
- Prepare for future courses

Classical Reasons

- You want to call yourself a "computer scientist"
- You want to build software people use (need correctness and performance)
- You need to make a purchasing decision or offer "expert" advice
- It's Required ;-)
- Other Reasons
 - To be Masters of the Digital universe you must demystify the magic
 - Computer Systems are just Fing cool and a marvel and testament to human ingenuity

PIAZZA

 Piazza will be the main forum for communication and online interaction -- Use it to ask your questions

https://piazza.com/bu/fall2014/cs210/home

- Who has taken 131?
- Who has taken 112?

SYLLABUS

• https://piazza.com/bu/fall2014/cs210/home

DISCUSSIONS & QUIZZES

- Discussion's are a fundamental aspect of this course small setting in which you can get the details sorted out
- There will be some graded quizzes in discussions
- Union of Lectures and Discussions cover the material for the course.
- This we also have a Undergraduate Assistant (UA) who will hold office hours and additional info sessions

GENERAL ADVICE

- Start assignments early and don't underestimate the amount of work.
- This is your chance to explore your curiosity ... ask questions and "tinker".
- Becoming and expert at anything takes a lot of practice.
- We love this stuff... make use of use we are happy to help (we are available 10hr/week out side of lectures + discussions)
- Don't over thinking things machines are dumb.
- The basics are critical ... squash miss-understandings and problems early!

WHAT DO SYSTEMS COMPUTERS REALLY RUN ON?

WHAT DO SYSTEMS COMPUTERS REALLY RUN ON?

COFFEE!

 Please drop by and have some with me Monday's 1:00 - 2:00 at Pavement.

NEXT FEW LECTURES

- Thursday: Overview of Computer Systems READ
 CSAPP:Ch. I
- Monday Discussion and Next Tuesday's Class "C" and Systems Programming READ K&R Ch. I and Sections 4.I-4.5,5.I-5.6,6.I-6.4 First Problem set will be assigned
- After that we will move on to a proceed through the Basics of computational hardware and Data Representation CSAPP:
 Ch 2. keep up with the readings

MAKE SUREYOU CAN GET TO THE PIAZZA COURSE SITE

READ AND SIGN SYLLABUS.

(http://www.cs.bu.edu/~jappavoo/Resources/2 | 0/syllabus.pdf)

GO GET YOUR COMPUTER ACCOUNT SETUP! EMA 302

(http://www.cs.bu.edu/labs/)

DO READINGS

WHO AM I AND WHY AM I HERE?

MY LIFE IN COMPUTING

- Built and programmed my first 3 computers starting when I was 10 with my dad.
- My first UNIX account Love at first sight and scaring the !@#\$%* out of me
- I 6 months as a mainframe programmer (old but not that old)
- IBM AIX support Vision Lab and Playbot
- NUMachine & Tornado Research Large scale Multi-Processor and OS
- K42 IBM follow on to the Tornado OS (my PhD)
- Libra A new kind of OS for data-center applications JAVA,
 Mapreduce
- Kittyhawk and the Global Cloud Computer

WHAT I AM CURRENTLY WORKING ON

• Programmable Smart Machines — PSM

The Cloud: A platform for a new class of Interactive High-Performance Web Apps

Elastic Backend View of Cloud Computing

EbbRT a unique runtime for Enabling Elastic Application Acceleration

EbbRT

- Allows developers to easily stitch in scalable elastic computation into their apps.
- App function can have full control of the hardware -- shedding full OS's when they are not necessary (nodes naturally become light-weight custom accelerators).
- Provides a Distributed Object Model that enables composition, customization and reuse of optimized distributed data-structures and algorithms.
- Built with Multi-core and Multi-node optimization in mind.
- First class low-level support for Event Driven Programming.

EbbRT well suited to directly hosting managed environments on the bare-metal: Java, LUA, Python and construction of new distributed custom ones eg. Distributed In-Memory Hash Tables

The Loop

Patient

Motion is a BIG Problem!

Results

In Pursuit of a New Kind of Computer

Programable Smart Machine Lab (PSML) Jonathan Appavoo, Boston University

"And now for something completely different..."

Properties

Simply and yet Richly Programmed

Automatically improves with its size

Automatically improves/adapts with experience

Amenable to implementation with low power devices

A programmable child that is pedantically obedient without the attitude :-)

Hmmm Now What?

Simply and yet Richly Programmed

Automatically improves with its size

Automatically improves/adapts with experience

Amenable to implementation with low power devices

behavior introduce a cache based optimization: hash table ht get(key,value) put(key,value) key = hf(s); Yikes... if (get(key,&yalue)==hit) {
fast(value), Warn you; -) } else { slow(&value); put(key, value);

Using knowledge of runtime

Filter

Train – Online Update

Predict

40018f	0.0,0.1
40016d	0.2-0.7
400180	0.8,0.9
400193	1.0

RBP purple RAX orange RCX yellow RDX red RSI blue RDI brown RIP green EFLAGS pink RSP skyblue [stack] salmon

