
CAS CS 210 :
COMPUTER SYSTEMS

Professor: Appavoo

• Objective: To provide the student with a fundamental
understanding of how to computer systems work and are
programmed.	

• We will discuss the following in the first lecture:	

• What is a computer system?	

• Course Info, Piazza, Syllabus	

• Discussion and Quizzes 	

• General advice.	

• If there is time a little about who I am and what I do

http://www.youtube.com/watch?v=YhsKCnDD3F8

http://www.youtube.com/watch?v=CoxQLJkLq1c

10:06

http://www.youtube.com/watch?v=yEP-pLvSdXs
6:51

First 1:30

SO WHAT IS A COMPUTER?

WHAT IS A SYSTEM?

“SYSTEM: an assemblage or combination of things or
parts forming a complex or unitary whole ...”

WHAT ARE WE MISSING?

SOFTWARE!

WITHOUT IT…

SO WHAT IS SOFTWARE?

COMPUTER SYSTEM :
A rich and beautifully tapestry of Interacting 	

Hardware + Software components that are the substrate to
our modern digital world

WELCOME TO CS210

• Course Objectives, Mechanics, and Syllabus	

• Introduction to Computer Architecture (visible to
programmer), and aspects of compilers and operating systems 	

• Not so much Computer Organization (not visible)

COURSE GOALS

• Understand components of computer systems 	

• Look under the hood	

• Understand software / hardware interaction	

• Understand design tradeoffs	

• Use “real-world” examples to illustrate concepts

COURSE OBJECTIVES
• Understand assembly language	

• Intel architecture (IA32): x86, Pentium, …	

• Able to understand other architectures quickly	

• Understand how C programs execute	

• Understand how data is represented and operators applied to
it

OBJECTIVES CONTINUED
• Learn functional units and interfaces	

• Processor, memory, Input/Output	

• Software 	

• Interfaces	

• Understand major sources of performance, e.g., how to
exploit locality in code	

• Prepare for future courses

WHY?• Classical Reasons	

• You want to call yourself a “computer scientist”	

• You want to build software people use (need correctness

and performance)	

• You need to make a purchasing decision or offer “expert”

advice 	

• It’s Required ;-)	

• Other Reasons	

• To be Masters of the Digital universe you must demystify

the magic	

• Computer Systems are just F’ing cool and a marvel and

testament to human ingenuity

PIAZZA
!

• Piazza will be the main forum for communication and online
interaction -- Use it to ask your questions

• https://piazza.com/bu/fall2014/cs210/home

• Who has taken 131?	

• Who has taken 112?

SYLLABUS

• https://piazza.com/bu/fall2014/cs210/home

DISCUSSIONS & QUIZZES
• Discussion’s are a fundamental aspect of this course — small

setting in which you can get the details sorted out	

• There will be some graded quizzes in discussions	

• Union of Lectures and Discussions cover the material for the
course.	

• This we also have a Undergraduate Assistant (UA) who will
hold office hours and additional info sessions

GENERAL ADVICE
• Start assignments early and don’t underestimate the amount

of work. 	

• This is your chance to explore your curiosity ... ask questions
and “tinker”.	

• Becoming and expert at anything takes a lot of practice.	

• We love this stuff... make use of use we are happy to help (we
are available 10hr/week out side of lectures + discussions)	

• Don’t over thinking things machines are dumb.	

• The basics are critical ... squash miss-understandings and
problems early!

WHAT DO SYSTEMS
COMPUTERS REALLY RUN

ON?

WHAT DO SYSTEMS
COMPUTERS REALLY RUN

ON?

• Please drop by and have
some with me Monday’s
1:00 - 2:00 at Pavement.

COFFEE!

NEXT FEW LECTURES
• Thursday: Overview of Computer Systems — READ

CSAPP:Ch. 1	

• Monday Discussion and Next Tuesday’s Class — “C” and
Systems Programming — READ K&R Ch. 1 and Sections
4.1-4.5,5.1-5.6,6.1-6.4 — First Problem set will be
assigned

• After that we will move on to a proceed through the Basics of
computational hardware and Data Representation — CSAPP:
Ch 2. — keep up with the readings

MAKE SURE YOU CAN GET TO THE PIAZZA COURSE SITE	

!

READ AND SIGN SYLLABUS.	

(http://www.cs.bu.edu/~jappavoo/Resources/210/syllabus.pdf)	

!
GO GET YOUR COMPUTER ACCOUNT SETUP!	

EMA 302	

(http://www.cs.bu.edu/labs/)	

!
DO READINGS

WHO AM I AND WHY AM I
HERE?

MY LIFE IN COMPUTING

•Built and programmed my first 3 computers starting when I was 10 with
my dad.	

•My first UNIX account — Love at first sight and scaring the !@#$%*
out of me	

•16 months as a mainframe programmer (old but not that old)	

•IBM AIX support — Vision Lab and Playbot	

•NUMachine & Tornado — Research Large scale Multi-Processor and OS 	

•K42 — IBM follow on to the Tornado OS (my PhD)	

•Libra — A new kind of OS for data-center applications — JAVA,
Mapreduce	

•Kittyhawk and the Global Cloud Computer

WHAT I AM CURRENTLY
WORKING ON

•Elastic Building Block Runtime — EbbRT	

•Programmable Smart Machines — PSM

The Cloud: A platform for a new class of
Interactive High-Performance Web Apps

Elastic Context

Cloud Provider
Resources

alloc dealloc

Dynamic Load

Elastic Backend View of Cloud Computing

nodes
(VMs/PMs)

http://www.belerophon.com/cgi-recon

Elastic Context

software constructed on-demand
accelerators

EbbRT a unique runtime for Enabling Elastic Application
Acceleration

EbbRT
• Allows developers to easily stitch in scalable elastic computation into their

apps.

• App function can have full control of the hardware -- shedding full OS’s when
they are not necessary (nodes naturally become light-weight custom
accelerators).

• Provides a Distributed Object Model that enables composition,
customization and reuse of optimized distributed data-structures and
algorithms.

• Built with Multi-core and Multi-node optimization in mind.

• First class low-level support for Event Driven Programming.

EbbRT well suited to directly hosting managed
environments on the bare-metal: Java, LUA, Python and

construction of new distributed custom ones
eg. Distributed In-Memory Hash Tables

The Loop

Image Analysis & Diagnosis

Feedback

Patient

Motion	 is	 a	 BIG	 Problem!

Results

se
co

nd
s

0

4

8

11

15

19

23

26

30

64x64

0.01.0
3.0

20.7

PC BG1K BG4k BG16k

se
co

nd
s

0

225

450

675

900

1125

1350

1575

1800

512x512

5.025.0
135.0

1617.3

se
co

nd
s

0

1125

2250

3375

4500

5625

6750

7875

9000

1024x1024

24.0108.0
539.0

8605.5
(~27mins)

(~2.4hrs)

In Pursuit of a New
Kind of Computer

Programable Smart Machine Lab (PSML)	

Jonathan Appavoo, Boston University

“And now for something completely different...”

• Simply and yet Richly Programmed 	

• Automatically improves with its size	

• Automatically improves/adapts with experience	

• Amenable to implementation with low power
devices

A programmable child that is pedantically obedient
without the attitude :-)

Properties

Hmmm Now What?
• Simply and yet Richly

Programmed 	

• Automatically improves with its
size	

• Automatically improves/adapts
with experience	

• Amenable to implementation
with low power devices

Yikes... 	

I did warn you ;-)

hash table ht

Using knowledge of runtime
behavior introduce a cache
based optimization:

get(key,value)
put(key,value)

key = hf(s); !
if (get(key,&value)==hit) { !
 fast(value);!
} else { !
 slow(&value); !
 put(key,value); !
}

3 x 7

Filter
Byte 128265 Changing Bits out of 1345216 State Bits

Tim
e

inner 0.1 Execution

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 0.2 0.4 0.6 0.8 1

Nu
m

be
r o

f i
ns

tr
uc

tio
ns

Probabilty of 1 as vector element

Instructions Executed

.0000000000400144 <inner>:
 400144: 55 push %rbp
 400145: 48 89 e5 mov %rsp,%rbp
 400148: 48 89 7d e8 mov %rdi,-0x18(%rbp)
 40014c: 48 89 75 e0 mov %rsi,-0x20(%rbp)
 400150: 89 55 dc mov %edx,-0x24(%rbp)
 400153: c7 45 f8 00 00 00 00 movl $0x0,-0x8(%rbp)
 40015a: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
 400161: eb 30 jmp 400193 <inner+0x4f>
 400163: 8b 45 fc mov -0x4(%rbp),%eax
 400166: 48 63 d0 movslq %eax,%rdx
 400169: 48 8b 45 e8 mov -0x18(%rbp),%rax
 40016d: 48 01 d0 add %rdx,%rax
 400170: 0f b6 00 movzbl (%rax),%eax
 400173: 0f b6 d0 movzbl %al,%edx
 400176: 8b 45 fc mov -0x4(%rbp),%eax
 400179: 48 63 c8 movslq %eax,%rcx
 40017c: 48 8b 45 e0 mov -0x20(%rbp),%rax
 400180: 48 01 c8 add %rcx,%rax
 400183: 0f b6 00 movzbl (%rax),%eax
 400186: 0f b6 c0 movzbl %al,%eax
 400189: 0f af c2 imul %edx,%eax
 40018c: 01 45 f8 add %eax,-0x8(%rbp)
 40018f: 83 45 fc 01 addl $0x1,-0x4(%rbp)
 400193: 8b 45 fc mov -0x4(%rbp),%eax
 400196: 3b 45 dc cmp -0x24(%rbp),%eax
 400199: 7c c8 jl 400163 <inner+0x1f>
 40019b: 8b 45 f8 mov -0x8(%rbp),%eax
 40019e: 5d pop %rbp
 40019f: c3 retq

Train — Online Update

MASK = XOR(LAST,CUR) | MASK!
BITS = CONDENSE(CUR & MASK)!
FANN_TRAIN(NET,OLDBITS,BITS,…)!
OLDBITS = BITS

0

513

-8.0

1

+2.8

2

-8.0

4
+2.9

5

+3.1

6

+4.0

7

+2.5

512

3

11

520

-2.5

-2.6

-3.2

-2.3

522

-4.0

-3.8

-3.5

-3.3

523

-3.1

-2.9

-3.6

-3.6

9

525

-2.5

-2.3

+2.1

+2.2

526

-3.9

-3.2

+2.4

+2.4

528

+2.5

+2.7

12
+2.6

8

543-2.8

-2.1

-2.6

-2.8

544

-4.7

-3.5

-3.2

-3.1

549

+3.6

+2.6

+2.4

550

+3.1

+2.5

+3.2

+2.3

-2.8

-2.7

551

+3.2

+2.5

+2.5

+3.5

-2.7

-2.6

552

-3.8

-2.9

-2.6

-2.9

-3.2

-3.4

+3.3

556

+2.9

+3.1

-3.7

-3.7

561

+2.3

+2.1

+2.6

+2.6

-2.5

-2.4

-3.7

563

-3.2

+2.5

-3.5

+2.8

568

-2.2

-2.2

+4.2

+3.7

575

+3.7

+2.6

+2.9

+2.9

578

+3.0

579

-5.2

+2.8

-3.1

-2.9

580
+2.5

581

-5.1

+2.9

-3.2

-2.7

582

-2.8

-3.9

+4.0

-2.4

+3.5

+3.5

-3.9

583

-3.2

-4.4

+4.3

-2.5

+2.5

+3.6

-2.5

584

-3.6

-3.4

-3.2

+3.2

-3.3

-2.2

+3.2

585

-3.1

-2.9

-3.2

+3.2

-2.9

-2.3

+2.8

586

+4.1

587
+4.6

589

+2.7

590
+2.4

40018f 0.0,0.1

40016d 0.2-0.7

400180 0.8,0.9

400193 1.0

 400163: mov -0x4(%rbp),%eax
 400166: movslq %eax,%rdx
 400169: mov -0x18(%rbp),%rax
 40016d: add %rdx,%rax
 400170: movzbl (%rax),%eax
 400173: movzbl %al,%edx
 400176: mov -0x4(%rbp),%eax
 400179: movslq %eax,%rcx
 40017c: mov -0x20(%rbp),%rax
 400180: add %rcx,%rax
 400183: movzbl (%rax),%eax
 400186: movzbl %al,%eax
 400189: imul %edx,%eax
 40018c: add %eax,-0x8(%rbp)
 40018f: addl $0x1,-0x4(%rbp)
 400193: mov -0x4(%rbp),%eax
 400196: cmp -0x24(%rbp),%eax
 400199: jl 400163 <inner+0x1f>

Predict

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

Fi
na

l M
IS

S
ra

te
 o

n
be

st
 tr

ia
l

Probabilty of 1 as vector element

Best Network for each Probability

18f:4

18f:4

16d:4

16d:4

16d:4

16d:2

16d:3

16d:2 180:2

180:3

193:4

18f:20

18f:89

16d:66

16d:12

16d:7

16d:44

16d:25

16d:40
180:44

180:22

193:74

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 0.2 0.4 0.6 0.8 1

Nu
m

be
r o

f i
ns

tr
uc

tio
ns

Probabilty of 1 as vector element

Instructions Executed

0

2000

4000

6000

8000

0.1 0.3 0.5 0.7 0.9
θ

µ

Expected value of boolean inner product

0

500

1000

1500

2000

0.1 0.3 0.5 0.7 0.9
θ

σ

Variance of boolean inner product

10000 simulations of boolean inner product of 8192-vectors

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

Fi
na

l M
IS

S
ra

te
 o

n
be

st
 tr

ia
l

Probabilty of 1 as vector element

Best Network for each Probability

18f:4

18f:4

16d:4

16d:4

16d:4

16d:2

16d:3

16d:2 180:2

180:3

193:4

18f:20

18f:89

16d:66

16d:12

16d:7

16d:44

16d:25

16d:40
180:44

180:22

193:74

RBP! purple!
RAX! orange!
RCX! yellow!
RDX! red!
RSI! blue!
RDI ! brown!
RIP! green!
EFLAGS! pink!
RSP !skyblue!
[stack] !salmon

