CAS CS 210
COMPUTER SYSTEMS

Professor: Appavoo
CS:APP2e : Chapter |

HARDWARE & SOFTWARE

OVERVIEW: HODGE-PODGE

INFORMATION IS BIT +
CONTEXT

ELECTRICITY & TRANSISTORS

T B
SO0 sl SO
+6V
B 7
httpy/fwikirobertt lasses/20 1 0/VIS I 47A/Lab3 http://en.wikipedia.org/wiki/Transistor

INTRODUCTION

« Binary Digit : Bit
« Groups of Bits + An Interpretation = Encoding
+ Computers Store and manipulate information in ONLY in binary.

« Despite the fact that we want to work with numbers, letters, symbols,
pictures, sound, audio, etc.

* We must represent the information by an encoding

Representations are not the same as the Information.
You must know what the encoding/context is to tell
what a binary value “mean”

THE BYTE — 8 BITS

8 switches
8 binary digits 706|554 3]2]1]0
o/t o/ |ort|ortffort {ort [ort|or
2 HEX(16 valued) digits - n
BT

: | OFF,ON,OFF,0FF,0N,ON,0FF,ON
: 01001101
g 4D

MEHDABP OB ANALN RO

EXAMPLES

A PROGRAM IS JUST BINARY
TOO!

THEVON NEUMANN IVIODEL

The archetype of the general-
purpose digital computer

First Draft of a Report
on the EDVAC

by

THEVON NEUMANN MODEL

The archetype of the general-
purpose digital computer

First Draft of a Report
on the EDVAC

by

Five Components

Computer

Processor || memory

eInput
*Output
sMemory
=Datapath
«Control

THE COMPUTER

. INTERNALS
2,
“, Processor } Interrupts
COMPUTER
«Storage Memory- /0 bus ‘
“Processing 1 1 |
s
memary i
Graphics //M/
output

Bus = control lines + data lines
Figure 13 The Computer Control lines carry requests, acknowledgements, type of information
Data lines carry data, complex commands, or addresses

THE PROCESSOR

Datapath and control

Datapath: ALU + registers

Implemented using millions of transistors

Impossible to understand by looking at each transistor

u Machine Evolution

" 486 1989 1.9M
= Pentium 1993 3.1M
= Pentium/MMX 1997 4.5M
= PentiumPro 1995 6.5M
= Pentium IlI 1999 8.2M
= Pentium 4 2001 42mM

= Core 2 Duo 2006 291M

THE MANUALS

http://www.cs.bu.edu/~jappavoo/Resources/210/
xtra/IA32. ic_archi re(24547007)-v1.pdf
http://www.cs. 1/~ voo/R rces/210/extr:

IA32 instruction set reference(24547107)-v2.pdf

http://www.cs.bu.edu/~jappavoo/Resources/210/extra/
IA32_system programming guide(24547207)-v3.pdf

THE STORED PROGRAM
&
THE LOOP!

STORED PROGRAM CONCEPT

PROGRAMS
(INSTRUCTIONS)

Y

DATA

4

BOTH
STORED IN
MEMORY

UNIFIED PROCESSING

MODEL EMBODIED BY

CPU -- INSTRUCTIONS

JUST ANOTHER FORM
OF DATA

g G 2.2 F

g Microprocessors generally execute a program by

L repeatedly cycling through the steps shown below
& (this description is somewhat simplified):
" e

1. Feich the next instruction from memory.

vean TRODUGED.
2. Read an operand (if required by the

instruction).

Figure 2-4. Relative Performance of the
8086 and 8088

23

8086 AND 8088 CENTRAL PROCESSING UNITS

3. Exccute the instruction.
4. Write the
instruction)

The two units can operate independently of one
another and are able, under most circumstances,
to extensively overlap instruction fetch with exe-
cution. The result is that, in most cases, the time
normally required to fetch instructions ““dis-

result (if required by the

In previous CPUs, most of these steps have been
performed serially, or with only a single bus cycle
fetch overlap. The architecture of the 8086 and
8088 CPUs, while performing the same steps,
allocates them (o two separate processing units
within the CPU. The execution unit (EU) executes
instructions; the bus interface unit (BIU) fetches
instructions, reads operands and writes results

appears” because the EU executes instructions
that have already been fetched by the BIU. Figure
2-5 illustrates this overlap and compares it with
traditional microprocessor operation. In the
example, overlapping reduces the elapsed time
required (0 execute three instructions, and allows
two additional instructions to be prefetched as
well.

The processor causes the system to perform the desired operations by
reading the first instruction in the program, and performing the very simple
task dictated by the specific pattern of bits in this instruction (referred

to as "executing" that instruction). It then goes on to the nmext instruc-

tion in the program and executes it.| This simple operation of fetching ar.
.cion 1 of fetching

instruction and executing it is performed over and over, each time on the
next instruction in sequence. Ii

is way the program instructs the pro-

cessor to bring about the desired system operation.

THE LOOP!
THE HEART OF MACHINE

CPU Execution Cycle

+ Obtain instruction from program
storage

* Determine required actions and
instruction size

* Locate and obtain operand data
* Compute result value

* Deposit results in storage for later use

v

Next + Determine successor instruction
~ | Instruction

IMAGINE IF ALL SOFTWARE
HAD TO BEWRITTEN AS
MACHINE CODE

Effectively we would be mainly writing low-level control
programs that shuffle bits between hardware devices and
represent all data an code as raw binary numbers

WE NEED SOME
ABSTRACTION LAYERS!

PROGRAM TRANSLATION

MACHINE PROGRAMMER
DEFINED SPECIFIED

Assembly Language

High Level Language
Program

Machine Language
Compiler

Assembly Language
Program

Assembler

Control

Datapath

Machine Language

Logic Gates
— Program

Transistors & Signals

WHY “C"

“In computing, C (/si, like the letter C) is a general-purpose programming language
initially developed by Dennis Ritchie between 1969 and 1973 at Bell Labs.[4] Its
design provides constructs that map efficiently to typical machine instructions, and
therefore it found lasting use in applications that had formerly been coded in
assembly language, most notably system software like the Unix computer operating
system”

« Very little between you and the hardware.

* Power and Control: Allows you to more directly program/
control all aspects of the hardware.

* You can create new environments/machines for other
programmers

* But what can happen when you play with fire?

BEHIND THE CURTAINS

#include <stdio.h>
* What exactly is a program?
int main(void
* How are they really constructed? (void)

* With “C" we can more directly printf(*hello world!\n");
explore these things. return |;

}

printf.o

hello.c p’;’:ssm nello.i | Compiler | nello.s |Assembler| neito.o | Linker | neilo
(cpp) ‘ (ce1) (as) (1g)

Source Modified Assembly Relocatabl Executable

program source ‘program object object

(text) (text) programs

program program
(text) (binary) (binary)

JHELLO: STARTS WITH 1O

System bus Memqry bus

ALl pain | "hello”
4 ige /| memory
Expansion slots for

1/0 bus
other devices such
US Graphics Disk as network adapters
controll adapter controller

Mouse Keyboard Display ——
ueer (o
types
"hello”

LOAD : MORE IO

Register file

System bus Memqry bus

[} Main | "hello,world\n"
bri N V| memory| 116 code

/0 bus 4 Expansion slots for
other devices such
USB Graphics as network adapters

controller adapter

Mouse Keyboard Displa
v pey hello executable

stored on disk

EXECUTE:AND MORE 1O

cPy

Register file

System bus Memory bus

N 1N | Main |"helio,world\n”
178 memory

4 L /0 bus
Uss
controller ad: r

Mouse Keyboard Display
"hello,world\n"

hello code

Expansion slots for
other devices such
as network adapters

Disk
controller

hello executable
stored on disk

CACHES MATTER

MOVE IT!

COMMUNICATION TIME
MATTERS : CACHES

Register file
e
Systembus Memory bus

Re: |ster“fi‘l;
A==
<;"

System bus Memory bus

o] Main
bridge

Bus interface

Lo:
Smaller Regs CPU registers hold words retrieved from
faster, emory.
and L1:/ L1cache
coster (SRAM) L1 cache holds cache lines retrieved
(gfor,a;':’ from the L2 cache.
devices L2: L2 cache
(SRAM)
L2 cache holds cache lines
retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines

Larger, retrieved from memory.

slower, . X
and L4 Main memory

cheaper (DRAM)

(per byte) Main memory holds disk
storage blocks retrieved from local
devices

L5: Local secondary storage
(local disks)
Local disks hold fles
retrieved from disks on
remote network servers.
Le: Remote secondary storage

(distributed file systems, Web servers)

NEED MORE AB

STRACTIONS

/O AND RESOURCE
MANAGEMENT

RUNTIME SOFTWARE LAYERS

OPERATING SYSTEMS
(SYSTEMS SOFTWARE)

Application programs } Software
Operating system Laye red Model
Processor Main memor yy | O devices | } Hardware
Processes
Virtual memory SYSTEM SOFTWARE
— CREATES
— ABSTRACTIONS
Processor Main memory | 1/O devices
Process A Process B
Time l
User code Context
—— Kernel code } itch
Disk interrupt } User code
o Context
Ret — Kernel code } witch
from read l User code

VIRTUAL MEMORY

Memor
Kemel virtual memor I invisible to
v user code

stack

User
(created at runtime)

Memory mapped region for
shared libraries

]

Run-ime heap
(created by malloc)

printf function

Read/write data
Loaded from the

hello executable file
Read-only code and data
008048000 (321

0x00400000 (64) "
o

s 1s

hello hello.c hello.i hello.o hello.s

$ hexdump -C hello.c

00000000 23 69 6e 63 6c 75 64 65 20 3c 73 74 64 69 6f 2e |#include <stdio.|
00000010 68 3e 0a 0a 69 6e 74 0a 6d 61 69 6e 28 69 6e 74 |h>..int.main(int|
00000020 20 61 72 67 63 2c 20 63 68 61 72 20 2a 2a 61 72 | argc, char **ar|
00000030 67 76 29 0a 7b 0a 20 20 20 70 72 69 6e 74 66 28 |gv).{. printf(|
00000040 22 48 65 6c 6c 6f 20 57 6f 72 6c 64 21 21 21 5c | "Hello World!!!\|
00000050 6e 22 29 3b 0a 20 20 20 72 65 74 75 72 6e 20 30 |n");. return 0|
00000060 3b 0a 7d 0a 531

00000064

NETWORKS AS 1O DEVICE

Register file

ALU

iI System bus Memory bus
AR N

f 1 lain
mamerace [o K| e

Expansion slots
1/O bus

usB Graphics Disk Network
controller adapter controller ada

MOITJSS Ksleoard Monitor

ABSTRACTIONS ON TOP OF
ABSTRACTIONS

Virtual machine

—
Processes
Instruction set
Files
/—/%
Operating system Processor Main memory ‘ I/O devices

THE FREE LUNCH ENDED
AWHILE AGO

MUST GO FASTER!!

2 BUT HOW?
£

WHAT WAS THE
MEGAHERTZ WAR?

§ WHO WON?
MULTI-CORES & GPU's
WHAT'S THE BIG
DEAL?

WHO LOOSES?

HMMMM

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000
1,000,000,000
100,000,000
z shows vansstor
£ 10,000,000 count coubing sery
] Hoyears
8
5
]
2 1000000
2
s g
& e
100,000 -
10,000
2,300
1971 1980 1990 2000 2011

Date of introduction

MUTLI-CORES

Processor package

i core0 Core 3

L3 unified cache
(shared by all cores)
T

l Main memory

Intel Corei7 organization

A SIMPLE EXAMPLE OF THE
UNDERLYING VIEW OF A
COMPUTER

A COMPUTER

RAM : Memory
locations

Registers: Instruction
Register (IR), the Program
Counter (PC), and the
Accumulator.

Buses: Address, Data,
Control

ALU: Math and Logic
operations

Control Unit: Decoder and the
Multiplexor compose the Control
Unit.

‘. 1s/CPU/L esson him

INSTRUCTION SET ARCHITECTURE

Number bit
| | |
Op-code Operand
Op-code Mnemonic Function Example
1 LOAD Load the value of the operand into the Accumulator LOAD 10
10 srome Store the value of the Accumulator at the address [
specified by the operand
11 ADD Add the value of the operand to the Accumulator ADD #5
100 sus Subtract the value of the operand from the SUB #1
Accumulator
101 mouar Ifthe value of the operand equals the value of the EOUAL #20
Accumulator, skip the next instruction
110 guwp Jumptoaspecified instruction by setting the Program o ¢
Counter to the value of the operand
111 HALT Stop execution HALT
v eduissoniha e AN EUORe P ssson il ‘

A PROGRAM — SUM

This program represents the formulas x =2,y =5, x + y = z where
the variables x, y, and z correspond with the memory locations 13,
14, and 15 respectively.

Machine code Assembly code Description

0 001 1 000010 LOAD #2 Load the value 2 into the Accumulator
1 010 0 001101 STORE 13 Store the value of the Accumulator in memory location 13
2 001 1 000101 LOAD #5 Load the value 5 into the Accumulator
3 010 0 001110 STORE 14 Store the value of the Accumulator in memory location 14

4 001 0 001101 LOAD 13 Load the value of memory location 13 into the Accumulator
5 011 0 001110 ADD 14 Add the value of memory location 14 to the Accumulator
6 010 0 001111 STORE 15 Store the value of the Accumulator in memory location 15

7 111 0 000000 HALT Stop execution

Sum program
e Faturan cPuA himl

SEE SUM ANIMATION

cs.vt i i essons/CPU/Lesson.html

NEXT CLASS

TUESDAY: Systems Programming and ‘C’ and Fundamentals of Boolean
Logic and Gates

In addition to the ‘C’ readings assigned in the Syllabus:

The first one is just to help you recall basic knowledge and the second
should be very short and | am only looking for basic comprehension

I. Review Truth Tables (eg. http://en.wikipedia.org/wiki/
Truth_table you might find it informative/fun to play with

the app here http://www.brian-borowski.com/software/
truth/) — recall how to prove logical equivalence

2. Skim httpi//en.wikipedia.org/wiki/Logic_gate focus on the
table in the “Symbols section”

