
CAS CS 210 :
COMPUTER SYSTEMS

Professor: Appavoo	

CS:APP2e : Chapter 1

HARDWARE & SOFTWARE

OVERVIEW: HODGE-PODGE

 INFORMATION IS BIT +
CONTEXT

......-.. .-.. ---.-----.-. .-.. -..

ELECTRICITY & TRANSISTORS

http://en.wikipedia.org/wiki/Transistorhttp://wiki.roberttwomey.com/Classes/2010/VIS147A/Lab3

S0

S0 S1 S0

S1

INTRODUCTION
• Binary Digit : Bit	

• Groups of Bits + An Interpretation = Encoding	

• Computers Store and manipulate information in ONLY in binary. 	

• Despite the fact that we want to work with numbers, letters, symbols,
pictures, sound, audio, etc. 	

• We must represent the information by an encoding

Representations are not the same as the Information. 	

You must know what the encoding/context is to tell

what a binary value “mean”

THE BYTE — 8 BITS

7 6 5 4

0/1 0/1 0/1 0/1

3 2 1 0

0/1 0/1 0/1 0/1

8 switches

8 binary digits

2 HEX(16 valued) digits 1

0-F

0

0-F

01001101

4D

OFF,ON,OFF,OFF,ON,ON,OFF,ON

EXAMPLES

A PROGRAM IS JUST BINARY
TOO!!

THE VON NEUMANN MODEL
The archetype of the general-
purpose digital computer

https://sites.google.com/site/michaeldgodfrey/vonneumann/vnedvac.pdf?attredirects=0&d=1

Data

Movement

Apparatus

Operating Environment

(source and destination of data)

Control

Mechanism

Data

Storage

Facility

Data

Processing

Facility

Figure 1.1 A Functional View of the Computer

INPUT +
OUTPUT

THE VON NEUMANN MODEL
The archetype of the general-
purpose digital computer

https://sites.google.com/site/michaeldgodfrey/vonneumann/vnedvac.pdf?attredirects=0&d=1

THE COMPUTER

COMPUTER

�6WRUDJH
�3URFHVVLQJ

3H
ULS
KH
UD
OV

&RPPXQLFDWLRQ�/LQHV

)LJXUH������7KH�&RPSXWHU

M a i n
m e m o r y

I / O
c o n t r o l l e r

I / O
c o n t r o l l e r

I / O
c o n t r o l l e r

D i s k G r a p h i c s
o u t p u t

N e t w o r k

M e m o r y – I / O b u s

P r o c e s s o r

C a c h e

I n t e r r u p t s

D i s k

INTERNALS

Bus = control lines + data lines
Control lines carry requests, acknowledgements, type of information
Data lines carry data, complex commands, or addresses

THE PROCESSOR
Datapath and control
Datapath: ALU + registers
Implemented using millions of transistors
Impossible to understand by looking at each transistor

Carnegie Mellon

Intel&x86&Processors,&contd.

�Machine&Evolution
� 486 1989 1.9M

� Pentium 1993 3.1M

� Pentium/MMX 1997 4.5M

� PentiumPro 1995 6.5M

� Pentium6III 1999 8.2M

� Pentium64 2001 42M

� Core626Duo 2006 291M

� Added&Features
� Instructions6to6support6multimedia6operations

� Parallel6operations6on61,62,6and64Cbyte6data,6both6integer6&6FP

� Instructions6to6enable6more6efficient6conditional6operations

� Linux/GCC&Evolution
� Very6limited

THE MANUALS

http://www.cs.bu.edu/~jappavoo/Resources/210/
extra/IA32_basic_architecture(24547007)-v1.pdf

http://www.cs.bu.edu/~jappavoo/Resources/210/extra/
IA32_instruction_set_reference(24547107)-v2.pdf

http://www.cs.bu.edu/~jappavoo/Resources/210/extra/
IA32_system_programming_guide(24547207)-v3.pdf

THE STORED PROGRAM
&

THE LOOP!

STORED PROGRAM CONCEPT
PROGRAMS	

(INSTRUCTIONS) DATA

BOTH
STORED IN
MEMORY

UNIFIED PROCESSING
MODEL EMBODIED BY
CPU -- INSTRUCTIONS
JUST ANOTHER FORM

OF DATA

THE LOOP!
THE HEART OF MACHINE

IMAGINE IF ALL SOFTWARE
HAD TO BE WRITTEN AS

MACHINE CODE
Effectively we would be mainly writing low-level control

programs that shuffle bits between hardware devices and
represent all data an code as raw binary numbers

WE NEED SOME
ABSTRACTION LAYERS!

PROGRAM TRANSLATION
MACHINE
DEFINED

PROGRAMMER
SPECIFIED

• Very little between you and the hardware.	

• Power and Control: Allows you to more directly program/
control all aspects of the hardware.	

• You can create new environments/machines for other
programmers	

• But what can happen when you play with fire?

WHY “C”
“In computing, C (/ˈsiː/, like the letter C) is a general-purpose programming language
initially developed by Dennis Ritchie between 1969 and 1973 at Bell Labs.[4] Its
design provides constructs that map efficiently to typical machine instructions, and
therefore it found lasting use in applications that had formerly been coded in
assembly language, most notably system software like the Unix computer operating
system”

BEHIND THE CURTAINS
• What exactly is a program?	

• How are they really constructed?	

• With “C” we can more directly
explore these things.

#include <stdio.h>	

#

int main(void)	

{	

 printf("hello world!!!\n");	

 return 1;	

}

./HELLO: STARTS WITH IO

LOAD : MORE IO

EXECUTE: AND MORE IO

CACHES MATTER

MOVE IT!

COMMUNICATION TIME
MATTERS : CACHES

NEED MORE ABSTRACTIONS	

#

I/O AND RESOURCE
MANAGEMENT	

#

RUNTIME SOFTWARE LAYERS

OPERATING SYSTEMS
(SYSTEMS SOFTWARE)

Layered Model

SYSTEM SOFTWARE	

CREATES

ABSTRACTIONS

PROCESSES

VIRTUAL MEMORY

FILES

$ ls !
hello hello.c hello.i hello.o hello.s !
$ hexdump -C hello.c!
00000000 23 69 6e 63 6c 75 64 65 20 3c 73 74 64 69 6f 2e |#include <stdio.|!
00000010 68 3e 0a 0a 69 6e 74 0a 6d 61 69 6e 28 69 6e 74 |h>..int.main(int|!
00000020 20 61 72 67 63 2c 20 63 68 61 72 20 2a 2a 61 72 | argc, char **ar|!
00000030 67 76 29 0a 7b 0a 20 20 20 70 72 69 6e 74 66 28 |gv).{. printf(|!
00000040 22 48 65 6c 6c 6f 20 57 6f 72 6c 64 21 21 21 5c |"Hello World!!!\|!
00000050 6e 22 29 3b 0a 20 20 20 72 65 74 75 72 6e 20 30 |n");. return 0|!
00000060 3b 0a 7d 0a |;.}.|!
00000064!

NETWORKS AS IO DEVICE

ABSTRACTIONS ON TOP OF
ABSTRACTIONS

THE FREE LUNCH ENDED
AWHILE AGO

MUST GO FASTER!!!
BUT HOW?	

#
WHAT WAS THE
MEGAHERTZ WAR?	

#
WHO WON?	

#
MULTI-CORES & GPU’s
WHAT’S THE BIG
DEAL?	

#
WHO LOOSES?

HMMMM

MUTLI-CORES

Intel Corei7 organization

Carnegie Mellon

Intel&x86&Processors,&contd.

�Machine&Evolution
� 486 1989 1.9M

� Pentium 1993 3.1M

� Pentium/MMX 1997 4.5M

� PentiumPro 1995 6.5M

� Pentium6III 1999 8.2M

� Pentium64 2001 42M

� Core626Duo 2006 291M

� Added&Features
� Instructions6to6support6multimedia6operations

� Parallel6operations6on61,62,6and64Cbyte6data,6both6integer6&6FP

� Instructions6to6enable6more6efficient6conditional6operations

� Linux/GCC&Evolution
� Very6limited

A SIMPLE EXAMPLE OF THE
UNDERLYING VIEW OF A

COMPUTER

A COMPUTER
RAM : Memory
locations

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

Buses: Address, Data,
Control

ALU: Math and Logic
operations

Control Unit: Decoder and the
Multiplexor compose the Control
Unit.

Registers: Instruction
Register (IR), the Program
Counter (PC), and the
Accumulator.

INSTRUCTION SET ARCHITECTURE

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

Op-code Mnemonic Function Example

1 LOAD Load the value of the operand into the Accumulator LOAD 10

10 STORE Store the value of the Accumulator at the address
specified by the operand

STORE 8

11 ADD Add the value of the operand to the Accumulator ADD #5

100 SUB Subtract the value of the operand from the
Accumulator

SUB #1

101 EQUAL If the value of the operand equals the value of the
Accumulator, skip the next instruction

EQUAL #20

110 JUMP Jump to a specified instruction by setting the Program
Counter to the value of the operand

JUMP 6

111 HALT Stop execution HALT

A simple machine language

A PROGRAM — SUM

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

Machine code Assembly code Description

0 001 1 000010 LOAD #2 Load the value 2 into the Accumulator

1 010 0 001101 STORE 13 Store the value of the Accumulator in memory location 13

2 001 1 000101 LOAD #5 Load the value 5 into the Accumulator

3 010 0 001110 STORE 14 Store the value of the Accumulator in memory location 14

4 001 0 001101 LOAD 13 Load the value of memory location 13 into the Accumulator

5 011 0 001110 ADD 14 Add the value of memory location 14 to the Accumulator

6 010 0 001111 STORE 15 Store the value of the Accumulator in memory location 15

7 111 0 000000 HALT Stop execution

Sum program

This program represents the formulas x = 2, y = 5, x + y = z where
the variables x, y, and z correspond with the memory locations 13,
14, and 15 respectively.

SEE SUM ANIMATION

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

NEXT CLASS
TUESDAY: Systems Programming and ‘C’ and Fundamentals of Boolean
Logic and Gates 	

In addition to the ‘C’ readings assigned in the Syllabus: 	

The first one is just to help you recall basic knowledge and the second
should be very short and I am only looking for basic comprehension	

1. Review Truth Tables (eg. http://en.wikipedia.org/wiki/
Truth_table you might find it informative/fun to play with
the app here http://www.brian-borowski.com/software/
truth/) — recall how to prove logical equivalence 	

2. Skim http://en.wikipedia.org/wiki/Logic_gate focus on the
table in the “Symbols section”

