CAS CS 210 - Computer Systems
Fall 2014

ProBLEM SET 1 (PS1) (’C’ Basics, LoGIC AND DATA REPRESENTAITON)
OuT: SEPTEMBER 09
Dug: PART A SEPTEMBER 18, 1:30 PM; PART B SEPTEMBER 23, 1:30 PM

NO LATE SUBMISSIONS WILL BE ACCEPTED

To be completed individually. For all questions, show your work in obtaining the
final answers.

PART A: ’C’ Basics and Logic
READ: K&R: chapter 1, 5.1-5.6, 6.1-6.4

1) hello.c

0 g O T Wi~

#include<stdio .h>

int
main (int argc, char xxargv)
{
printf(” Hello World\n”);
return 0;
}

Describe the meaning/side effect of each non-blank line.

© 00 O Ui W N~

QW W W W W W W WK NDNDNDDNDDNDDNDNDNDDND = /= =
N TR WNHEH O O IDUUER W FEOWOWWO U WwWwNn—=O

2) Memory and Pointers

#include <stdio.h>

int myint;

int xip;

char mystring [6] = ”hello”;
char =xcp;

int myfuncO(int x, int xip)
{
*ip = *xip + 2;
xX++;
return x;

}

int myfuncl(char xc)
{
if (xc >= "a’ && xc <= ’z7) {
xc +="A" — 7a7;
return 1;

}

return O;

}

int main(int argc, char xxargv)
{
myint = 0;
ip = &myint;
cp = mystring;

while (myfuncl(cp)) {
printf(”%d\n”, myfuncO(myint, ip));
Cp++;

}

printf(” mystring:%s myint:%d\n”, mystring, myint);

return O0;

Please provide the output below for the program listing.

Please fill in the missing values for the following table assuming that we stop the program just
prior to it exiting at line 36. All address values should be written as 8 digit hex values and all

integer values as simple decimals.

H Name ‘ Address Value H
mystring[0] 0x0804972c
mystring[1] 0x0804972d
mystring|[2] 0x0804972¢
mystring[3] 0x0804972f
mystring[4] 0x08049730
mystring|[5] 0x08049731
ip 0x0804973c¢
myint 0x08049740
cp 0x08049744

© 00 O Ui W N~

DD NN DNDNDD R = = b = e e
N O U W RHRE O OO Utk Wwhh+—OoO

3) Pointers and Structs

struct myStruct {
struct myStruct *p0;
struct myStruct xpl;
struct myStruct *p2;
char *CD ;
int val;

}s

struct myStruct xr;
struct myStruct xs;
struct myStruct xt;

s = malloc(sizeof(struct myStruct));

s—>p0 = malloc(sizeof(struct myStruct));
s—>p0—>p2 = malloc(sizeof (struct myStruct));
s—>p0—>p2—>pl = malloc(sizeof (struct myStruct));
s—>p0—>p2—>p0 = s—>p0;

r=s—>p0—>p2—>pl;

s—pl = malloc(sizeof (struct myStruct));

r—>p0 = malloc(sizeof (struct myStruct));
r—>p0—>p2 = malloc(sizeof (struct myStruct));
r—>p0—>p2—>p2 = malloc(sizeof (struct myStruct));
t = malloc(size(struct myStruct));
s—>p0—>p2—>pl—>p0—>p2—>val = 21;

t—val = 42;

s—>p2 = t;

s—>p0—>p2—>p0—>p2—>pl—>p0—>p2—>val = 3;

A struct is a multi-byte programmer defined type that groups together several members (K&R ch
6). Sizeof can be used to determine the aggregate number of bytes that a particular struct type
requires. Malloc is a standard ’C’ library call that dynamically allocates the requested number of
bytes of memory (K&R 7.8.5). Malloc returns the address of the newly allocated memory. Storing
the address in a variable of the appropriate pointer type allows you to access the memory allocated
by malloc. In the case of a struct pointer you use the ’->’, called the member selection operator,
to access a particular field of the struct pointed too. For futher details on structs and malloc see
the appropriate sections in K&R.

Complete the diagram on the next page. Illustrate the side effect of the above code fragment.
Draw all additional boxe and complete and add arrows as needed. Note assume there are no failures
in calls to malloc. You may use ’?’ to indicate unknown values of fields. Be sure to indicate all
instances of the struct and all field values.

4) Logic Gates and Truth Tables)
1. Prove both of DeMorgan’s Laws using Truth Tables. DeMorgan’s Laws are:

(a) Law 1: Stated in english and in 'C’
English: Not A and B is the same as Not A or Not B
'C: 1(A&&B) == (1A||!'B)

(b) Law 2: Stated in english and in ’C’

English: Not A or B is the same as Not A and Not B
'C: I(A]|B) == (1A&&!B)

2. Only using NOT, OR and AND gates draw the logic gate cicuit for the following boolean
expression. (w||!z)&& (y||(z&&z))

PART B: Data Representation

1) Book problems
1. Solve problem 2.61, on page 121, from our CS:APP2e text.
2. Solve problem 2.68, on page 123, from our CS:APP2e text.
3. Solve problem 2.71, on page 124, from our CS:APP2e text.

4. Solve problem 2.76, on page 126, from our CS:APP2e text.

2) 2’s Complement Respresentation

Fill in the below table assuming a 32 bit computer that uses 2’s complement representation, INT_MAX
and INT_MIN are defined as the computer’s signed integer representation maximum and minimum

value respectively, and:

int x = -1, y = Oxfeedface, z = INT_MAX, i = sizeof(short *);

C Expression Hexadecimal

X

z<<3

z<<((i>>1)-1)

"0 == (z + INT_MIN)

y & Oxffff

y >> 16

(y >> 16) | Oxffff

(T(0x10>>2)+1) == (x*i)

(Cz+1) + -1

(((x) << 1)) &y

((y<<3)+INT_MIN) " ((y<<3)+INT_MIN)

3) Misc
1. (010101)2 to base 10
2. (011100)2 to base 16
3. (54.125)10 to binary
4. (122.3)g to base 16
5. Find the decimal equivalent of the five-bit twos complement number: 11111

6. Show the results of adding the following pairs of six-bit twos complement numbers in decimal
and indicate whether or not overflow occurs for each case.
(a) 111110 4 111101
(b) 110111 + 110111
(c) 111111 + 001011

7. Complete the following table for the 5-bit 2’s complement representation. Show your answers
as signed base 10 decimal integers and the 2’s complement binary value.

H value decimal binary H

Largest Positive Number

Most Negative Number

Number of distinct Numbers

10

