@5 CS e
@@PUTER SYSTIERS
FEUNDAMENTALSHEIE
REPRESENTING AND

MANIPULATING
INFORMATION |

Professor: Appavoo

BITS AND NUMBER SYSTEMS

INTERPRETATION

A specific method or rule for using the vectors to
represent information and operations

binary vector character

[000] A
Eg.as an index into a [001]
table of symbols [010]
eg. english characters 01
[100]

(1o
[110]
[

I|Q||m g

INTERPRETATION

A specific method or rule for using the vectors to
represent information and operations

i binar binar: .

binary numbers [000] 000. 0 0

n : [001] 001, I
2 010 00)

=0 [0 O [l 3 2
imposes an order [100] 100. 4
and operations [0 101, 5
(+,—,/,*) on the [110] 110. 6

vectors [1. 7 [P

REMINDER OF NUMBER
SOIEMS

GENERALIZED BINARY
FOEITIONAL NUMBER SYSTRERS

most significant least significant
«babibo, b1 babs.,

binary point

where b is a base 2 digit — O or |
integers — positive power to left of the binary point
fractions — negative powers to right of binary point

most significant least significant
——— crlolgelylellloblors, ———>

binary point

convert to a decimal number as a sum of powers of 2

o A o A Gy SO Ll oo

PR A

110].01

//Azo\'\\

P23+ %97+ 0¥51 4+ 1520, 0% + [%22 + |93

1) < (1% ar @Ik s e B e SO l/Pha s (slli) < 11511/

Ba4+0 | o ©aF 14 1/

13 o @25 G125

13.375

most significant least significant
e En[e e, ————>

decimal point
convert to a binary number is kind of gross ;-)
+ Use "“remainder method” for the integer portion

* Use “multiplication method" for the fraction

* Example: convert | .25 from base 10 to 2

»convert 11.25 from base 10 to 2

remainder method multiplication method
1 /7 2 & .25 * 2 = 0.5
572 & .5 * 2 =/180
2 [2 &
1/ 2 *
.0l
1011.01

BASE 2, 10, |6 NUMEES
SIGIERS

* Binary (base 2):
+ 0000,0001,0010,.., 1001, 1010, .., [Tl
* Decimal (base 10):
© Q) 5 2 e S S ESIS
* Hexadecimal (base |6):
0 (O}, 1l 22 e /Ny el
* In C, OxFAI DS, printf(“%x", i)
+» Conversion among power-of-2 bases is simple

* Example: convert 01 101101 from base 2 to 16

INFORMATION STORAGE :
MEMORY (2.1)

+ Byte: basic unit of bits 8 bits: 28 possible patterns
+ Machine level program view : virtual array of bytes: M[a]
* a:addresses

* pointers: address and type : provides interpretation for a set of
bytes at a given address

SIEXADECIMAL NOTATIONY(Z3 SN

* binary values in base 2 are tedious: |0001010

* Base |0 not convenient : 0 - 255
+ Conversion among power-of-2 bases is simple

* Base |6 concise and easy to translate

+ Hex Digit has |6 possible values form O to F:
0,1,2345,6789ABCDEF

* 4 bits represent |6 unique numbers from O - |5 — one hex
digit

+ To convert simply work in groups of 4 bits. Padded left with
zero's as necessary. | Byte value is represented as 2 Hex Digits.

HEX

Binary | Hex | Decimal
0000] 0

goo? 0 0 Ox167a

0010 2 2

0011 3 3

0100 4 1

0101 B 5

0110 6 6 OOO\|O||O|O||||\0|O
0111 7 7

1000 8 8 l

1001 s 9 l
1010 a 10

1011 B 11 | 6 7 a
1100 c 12

1101 D 13

1110 E 12

1111 F 15

Worth remembering that positive power's of two convert simply: if x=2"
then binary | followed by n zeros and thus convert to hex easily too: eg.

2! =] 0000 0000 0000 0000b = Ox 0000

but the general case of conversion from decimal to hex requires remainde
method with division by |6 to find quotients and remainders

x=q*l6+r eg
1227 = 796 & 46 4 il = (1)

76 = 4 @ A6 9 AR = (@)
A= O 68 A ST ()
= 0x4CB

In‘C’ constants that are prefixed with Ox are hex values eg.
unsigned int x = 0x10, y = 16;
printf (“x=%d y=%d\n”, x ,y);

WORDS (2.1.2)

* Computers have a word size, w bits. Were w bits is the
natural type that the system can natively operate on/
manipulate.

* w bits : 2% values ranging from : 0 - (2%-1)
* pointer/addresses are word size -> what does this mean:
* virtual address size is limited to 2%

* machine can efficiently represent and operate on values that
range from O - (2*-1)

What are the common values of w today?
Is 4 GB (gigabytes) = 232 enough?

'C’: DATA SIZES & POINTERS
(2.1.3)

Sizes (in bytes) of C Pointers combine address
numeric data types and type to provide an
(ORI MR MNLaeil eXxact interpretation for

char I I the values of bytes at a
short int 2 2 particular address.
int & <
long int 4 8 T e
long long int 8 8 p is a pointer to an object
char * 4 8 of type T
float Gl A Ea
double 8 8 int *iptr;
void * 4 8 char *cptr;

FDDRESSING AND B EE
ORDERING (2.1.4)

* Multibyte object stored in contiguous sequence of bytes with
address of object the smallest address of the bytes used

* ENDIANESS: Two common choices for ordering bytes of a
multibyte object big endian (IBM 360) vs little endian (Intel
x86). Bi-endian (ARM, PowerPC)

int x = 0x01234567; // assume &x = 0x 100

0x100 | 0xI0l | Ox102 | OxI03
0x67 | Ox45 | 0x23 | OxOl
0x0l | 0x23 | Ox45 | Ox67

Network code, Memory dumps, and Advanced/Systems Programming

FIGURE 2.4 ANBRAE

* Playing with this code and understanding it in detail will pay
dividends

#include <stdio.h>

typedef unsigned char *byte_pointer;

_pointe

, start[i]);

(short)));

short)));
£ (unsigned short)));
of (unsigne

0x3039 0011 0000 00

001
OxCFC7 I100 1111 11000111

Why are the bytes reordered?

BRINTF IS YOUR FRIEND GIER
TO KNOW [T

REPRESENTING STRINGS
(2.1.5)

ASCII: Standard encoding of English characters,
punctuation, and some special characters into byte
values.

String a sequence of ASCII Byte Values with a final
Byte that has a O value to indicate the end of the
string.

int i=15; // 0x0000000F -> OxOF 0x00 0x00 0x00
char str[] = “bugs”; // %

ASCI

Lower Nibble ASCII Code Chart
ANBLANDA0Ns

0 ,1,2,3 A, B, C,;D EF

_© o[NUL[soH|sTx|ETX|EOT |ENQ|ACK[BEL| BS [HT | LF | vT | FF | CR [S0 [ST
-O 1foLE[pci|pc2[pc3[pca[NAK|sYN[ETB[cAN| EM [suB[ESc] Fs [s [Rs [us
25] [[T) T (] O N S R T =] =][7
Zielalz 3 e slel7lslo i l<[=1>17
o4 @lafsfc|o|e[Fle[n[T|a[k[L]|mM][N] O
TslPlaofR[s[TJufv w]x[v[z]I[N]1]~[]_
6/l ~|af[b|c|[d]e[f]log]nh|[i]j|[k]U[m]n|o
7lplafr|s|[t]lu]v]w]|x]y|[z]|{ | | 3|~ |pEL

http://en.wikipedia.org/wiki/File:ASCIl_Code_Chart.svg

REFRESENTING CODE (Z3F&H

Hardware dependent encoding of machine’s operations into
byte and multibyte values.

Stored Program seems obvious but was a big deal!

It also means that programs can be treated as data and
programs can generate programs on the fly.

We can have pointers to instructions sequences: C function
pointers!

BOOLEAN ALGEBRA (2.1.7)

ALGEBRA OFTRUTH=| AND FALSE=0
B o &AND:Xavy=7Z | OR X[

0o]oo o [BoH|KG
8 51 o [o o ||
1 I [o o WEeL
EEEEL I

Primitives for
working with ~ XOR: X~Y =7

raw bit patterns A
0 0 0
These are your ol R
building blocks! ol
| | 0

O KINDS OF BOOEESIM
WIEERATIONS (2.1.67 258

* BITWISE + LOGICAL
o = [iCae <L && ||
* operate on vector of bits * I=TRUE = X!=0 and

O=FALSE =X ==0
* result is a vector of bits
* operates on integral types
first map then apply boolean
operation to produce 0|

+ Conditional evaluation

BIT OPERATIONS (2.1.8)

‘C' Expression E B\nar.y Binary Result Hex Result
xpression
~0x41 ~[0100 00017 | [IOII I'110] OxBE
~0x00 ~[0000 0000] | [IFIT 1ITI] OxFF
[01'10 1001]
0x69 & 0x55 &[0101 0101] [0100 0001] Ox41
S ioss | 11010001 1y gy 0x7D

[[0101 0101]

SIFVECTORS AND SEHSS

* Bit level operations to maintain and manipulate sets: | is union
(A|B is union of A and B) and & is intersections (A&B is
intersection of A and B)

* Each bit position is represents the presence of an element

* Low level programming power and interfacing to machine
hardware is all about bit level manipulation.

» MASKING : a mask identifies a particular signals by having
ones in the right position:

X MASK X & MASK
0x8BADFOOD OxFF 0x0D
0x8BADFOOD | 0x000FO00F | 0x000D000D

ST OPERATEIRS

« left shift : x << k:where 0 <=k <= n-|:x is shifted k bits to
the left, dropping off the k most significant bits and filling the
right end with k zeros.

* right shift :x >> k: 2 types logical and arithmetic:
* logical right shift: left end filled with k zeros

* arithmetic right shift: left end filled with k repetitions of most
significant bit.

x=[01100011] | x=[10010101]

[00110000]

[01010000]

[((SSISOM [00000110] | [00001001]

[00000110] | [11111001]

(arithmetic)

E@G|ICAL OPERATCH

‘C’ Expression | Binary Expression | Binary Result |Hex Result

0x4 | 10100 00017 [0000 0000] | 0x00
1000 110000 0000] [0000 00017 | OOl
[0110 10017 8&
0x69 8& 0x55 | (0101 0101] [00000001] | OxOl
[0110 1001]
0x69 || 0x55 110101 0101] [0000 00017 | OxOl

0110 1001

069 8& (0x55) (!%om i

[0000 0000] | 0x00

UNSIGNED INTEGERS (2.2.2)

Encode a bit vector of length w “efficiently” into
positive integers

? [ﬂvuv—ly Tp—25 +eey 960]
2 = 3 I
. il
222 B20, ()= DD w2
20-1 B) i=0

L]
oo !‘ B2U,, : {0,1}" — {Unin, ..., Unax}
i) — i)

UMing, () =0 UMax, (7)) = Y ¥ 2i=2v —1

UNSIGNED ADDITION

UNSIGNED ADDITION

UNSIGNED ADDITION

UNSIGNED ADDITION

UNSIGNED ADDITION

WHAT ABOUT NEGATIVE
NUMBERS?

* How do we work with signed integers?
* What do we have at our disposal?

* What kind of properties would we like?

ALTERNATIVES

Unsigned Sign Magnitude
000 000 = +0

001 001 = +1
010 010 = +2
011 @ilil = 555
100 100 = -0
101 101 = -1
il 110 = -2
Lt 111 = -3

ALTERNATIVES

Unsigned Sign Magnitude One's Comp.

000 000 = +0 000 = +0
001 001 = +1 001 = +1
010 010 = +2 010 = +2
011 @ilil = 555 011 = +3
100 100 = -0 1008 ="=3
101 101 = -1 101 = =2
il 110 = -2 110 = -1
Lt 111 = -3 111 = -0

ALTERNATIVES

Unsigned Sign Magnitude One's Comp. Two's Comp.
000 000 = +0 000 = +0 000 = +0
001 001 = +1 001 = +1 001 = +1
010 010 = +2 010 = +2 010 = +2
011 ilil =) 011 = +3 (il = -3
100 100 = -0 100 = -3 100 = -4
101 101 = -1 101 = -2 101 = -3
110 110 = -2 110 = -1 110 = -2
111 111 = -3 111 = -0 111 = -1

0 IICH ONE IS BEST? Wil

* Issues: order, number of zeros, ease of operations
* Problems with SM and |'s complement:

* two representations for zero

« addition does not just work:

SIMi 1 =R <l I's complement: | + -|

0 IICH ONE IS BEST? Wil

* Issues: order, number of zeros, ease of operations
* Problems with SM and |'s complement:
* two representations for zero
« addition does not just work:
SIMi 1 =R <l I's complement: | + -|

001 001
101 110

0 IICH ONE IS BEST? Wil

* Issues: order, number of zeros, ease of operations
* Problems with SM and |'s complement:
* two representations for zero

« addition does not just work:

SIMi 1 =R <l I's complement: | + -|
001 001
101 110
110 ililil

0 IICH ONE IS BEST? Wil

* Issues: order, number of zeros, ease of operations
* Problems with SM and |'s complement:
* two representations for zero

« addition does not just work:

SIMi 1 =R <l I's complement: | + -|
001 001
101 110
110 Al

| +-1=2m | + -1=-0 close but still weird

2's Complement:
To obtain negative of a number flip the bits and add |

X =~x+ |

MATHEMATICAL DEFII_\QIITION
BOlE () = —oy,_12" 7 £ DN
=0

So that half the patterns
represent

I 0 (

. | <:><<2W"—>

and the other half map to

L] e O

3] { 1001 9 7
1010 10 - ot |
1011 11 -5

4, ("’X bl |)f0l”| <=x<QW-l—5. 1100 12 = mapping
1101 13 -3
1110 14 -2
1111 15 —1

SIGNED INTEGERS (2288

gagbr a signed
B2T,,(7) = magnituqe of
w-| bits
negative weight (0, ow—1 _ 1)
{07 _2w_1}
il = () ‘ By = 11

B2T([1,0,...,0]) = —2@~!

Tming,

B2T([0,0,...,0]) =0

7.214*71+.2w*171

BRI ([ORTRS 1) = 2 =L =
=1

Tmaxy,

C data type 16 32 64

UMax OXFFFF OXFFFFFFFF OXFFFFFFFFFFFFFFFF
65,535 | 4,294,967,295 18,446,744,073,709,551,615
0x8000 0x80000000 0x8000000000000000
-32,768 |-2,147,483,648 -9,223,372,036,854,775,808
O0x7FFF 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
32,767 | 2,147,483,647 | 9,223,372,036,854,775,807

OXFFFF OXFFFFFFFF OXFFFFFFFFFFFFFFFF

0x00 0x0000 0x0000000000000000

‘C' standard does not specify two's comp

Cdatatype | min__| _max |

char

however, ‘typical’ 8, 16,

unsigned char

short 32 and 64 bit two
unsigned short complement numbers
nt can be expected
unsigned
<limits.n>

long
unsigned long

long long

unsigned long long

REONVERSIONS" BETVAVEE
SIGNED AND UNSIGNED

REONVERSIONS" BETVAVEE
SIGNED AND UNSIGNED

v = 53191

Oxcfc?

REONYVERSIONS” BETWWEER
SIGNED AND UNSIGNED

= -12345 Oxcfc7,

u = 4294967295 Oxffffffff,

uv

= 53191

tu = -1

OxFFFFffff

ou
prel 4ot
Unsigned Two's
0 0 complement
et
- /-‘ re
Comp.
Range (L= =l
=
-2
TMin

on
+2v 2»1 Unsigned

complement O 0
_owt

UMax

UMax—1

TMax +1| Unsigned

TMax Range

o

SIGNED VS UNSIGNED IN‘'C

When either operand of a comparison is unsigned, the
other operand is implicitly cast to unsigned.

0==0U
<0
-1<0U
2147483647>-2147483647-

33648U

unsigned I
signed |
unsigned 0

signed |

unsigned |

EXPANSION (2.2.6)

zero extension signed extension
expanding unsigned expanding signed
representation by representation by
simply adding leading replicating sign bit as
zero's as needed needed

These rules result in what you expect

2.2.6 presents the simple proof based using
induction on the definitions

IRSIERE ARE STILL THINGSSIRSS
EECAREFUER@EH

default is to first do size expansion and then
do assignment

This is not the same as doing the unsigned
interpretation and then the expansion

The second preserves the bit representation
vs the first will sign extend and then use this as
the pattern for the assignment

IEROINC ATION (2298

truncating w bit number is means we drop the high
order w-k bits

[B2, -y o] = [Zr, @in,]

Important relationship!
Truncating x to k bits is equivalent to x mod 2~

[.T”vfl. Lqp—2s coes Ty Tho 15 LoDy weny ,I‘()]

f

remainder of a division by 24

EREOMPLEMENT SUMMZEE

Unsigned & Signed Numeric Values ;.\ [ength bit vector

[E200182T00] Equivalence
Same encodings for ? [xw—ly T P :E()]
nonnegative values
Uniqueness binary to unsigned int
= Every bit pattern represents w—1
unique Integer value 5 i
» Each representable integer B2Uy(7) = E ;2!
Tooo B) has unique bit encoding i=0
o0 = ; A "
1010 0 | binary to signed int 5
1011 1 =5 =
= : it
EET I B2Ty(T) = —zp12Y '+ Y 22"
110 [18 | i=0
FETERN T =
‘conversion’in Cis relationships Know critical
reinterpret binary vector o f numbers and Rules
e z+2% <
- [2 \r) =
TW(2) = B2UW(T2By(w)) | L2 ul@) { 2o a=20 Tr?r:cijiiznl;j"tngeﬁgrs
it v

U2Ty(x) = B2Ty(U2Bu(a))

o u u<2w-l| forboth unsigned
P = u—2% y > 2wl and signed

