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BITS AND NUMBER SYSTEMS

INTERPRETATION
A specific method or rule for using the vectors to 

represent information and operations 

Eg. as an index into a 
table of symbols 	



eg. english characters

binary vector character

[000] ‘A’
[001] ‘B’
[010] ‘C’
[011] ‘D’
[100] ‘E’
[101] ‘F’
[110] ‘G’
[111] ‘H’



INTERPRETATION
A specific method or rule for using the vectors to 

represent information and operations 

Eg. as an n bit integer 
binary numbers 

imposes an order 
and operations 
(+,-,/,*) on the 

vectors

binary 
vector

binary 
number decimal

[000] 000. 0
[001] 001. 1
[010] 010. 2
[011] 011. 3
[100] 100. 4
[101] 101. 5
[110] 110. 6
[111] 111. 7

REMINDER OF NUMBER 
SYSTEMS

GENERALIZED BINARY 
POSITIONAL NUMBER SYSTEM

... b2 b1b0  b-1 b-2b-3 ... 

binary point

most significant least significant

where b is a base 2 digit — 0 or 1	


integers — positive power to left of the binary point	


fractions — negative powers to right of binary point



... b2 b1b0  b-1 b-2b-3 ... 

binary point

convert to a decimal number as a sum of powers of 2

most significant least significant

1101.011

+ 1*2-3+ 1*2-20*2-11*23 +1*22 + 0*21 + 1*20

1*8 +1*4 + 0*2 + 1*1 + 1*1/8+ 1*1/40*1/2

8 + 4 + 0 + 1 + 1/8+ 1/40

13 0.25 + 0.125

13.375

•Use “remainder method” for the integer portion	


•Use “multiplication method” for the fraction	


•Example: convert 11.25 from base 10 to 2

... d2 d1d0  d-1 d-2d-3 ... 

decimal point

convert to a binary number is kind of gross ;-)

most significant least significant



•convert 11.25 from base 10 to 2

11 / 2 = 5 * 2 + 1!
 5 / 2 = 2 * 2 + 1!
 2 / 2 = 1 * 2 + 0!
 1 / 2 = 0 * 2 + 1 

1011

.25 * 2 = 0.5!
 .5 * 2 = 1.0

.01

1011.01

remainder method multiplication method

BASE 2, 10, 16 NUMBER 
SYSTEMS

•  Binary (base 2):	


• 0000, 0001, 0010, ..., 1001, 1010,  ..., 1111	



• Decimal (base 10):	


• 0, 1, 2, ..., 9, 10, ..., 15	



• Hexadecimal (base 16):	


• 0, 1, 2, ..., 9, A, ..., F	


• In C, 0xFA1D5, printf(“%x”, i)	



• Conversion among power-of-2 bases is simple	


• Example: convert 01101101 from base 2 to 16

INFORMATION STORAGE : 
MEMORY (2.1)

• Byte: basic unit of bits 8 bits: 28 possible patterns	



• Machine level program view :  virtual array of bytes: M[a]	



• a: addresses	



• pointers: address and type : provides interpretation for a set of 
bytes at a given address



HEXADECIMAL NOTATION (2.1.1)
• binary values in base 2 are tedious: 10001010	



• Base 10 not convenient : 0 - 255 	


• Conversion among power-of-2 bases is simple	



• Base 16 concise and easy to translate 	



• Hex Digit has 16 possible values form 0 to F: 
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F	



• 4 bits represent 16 unique numbers from 0 - 15 — one hex  
digit	



• To convert simply work in groups of 4 bits.  Padded left with 
zero’s as necessary. 1 Byte value is represented as 2 Hex Digits.

HEX

0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0

0x167a

1 6 7 a

• Worth remembering that positive power’s of two convert simply:  if x=2n 
then binary 1 followed by n zeros and thus convert to hex easily too:  eg.	



	

 216 =1 0000 0000 0000 0000b =  0x10000	



• but the general case of conversion from decimal to hex requires remainder 
method with division by 16 to find quotients and remainders	



x = q * 16 + r  eg.	


 1227 = 76 * 16 + 11 -> (B)!
   76 =  4 * 16 + 12 -> (C)!
    4 =  0 * 16 +  4 -> (4)!
      = 0x4CB!
!

• In ‘C’ constants that are prefixed with 0x are hex values eg. 	


unsigned int x = 0x10,  y = 16; !

printf(“x=%d y=%d\n”, x ,y);



WORDS  (2.1.2)
• Computers have a word size, w bits.  Were w bits is the 

natural type that the system can natively operate on/
manipulate.	



• w bits : 2w values ranging from : 0 - (2w-1)	



• pointer/addresses are word size -> what does this mean:	



• virtual address size is limited to 2w	



• machine can efficiently represent and operate on values that 
range from 0 - (2w-1)

What are the common values of w today?	


Is 4 GB (gigabytes) = 232 enough? 

‘C’ : DATA SIZES & POINTERS 
(2.1.3)

C Declaration 32-bit 64-bit
char 1 1

short int 2 2
int 4 4

long int 4 8
long long int 8 8

char * 4 8
float 4 4

double 8 8
void * 4 8

Sizes (in bytes) of C 
numeric data types

Pointers combine address 
and type to provide an 

exact interpretation for 
the values of bytes at a 

particular address.	


!

T *p;	


p is a pointer to an object 

of type T	


eg. :	



int *iptr ;	


char *cptr ;	



ADDRESSING AND BYTE 
ORDERING (2.1.4)

• Multibyte object stored in contiguous sequence of bytes with 
address of object the smallest address of the bytes used	



• ENDIANESS: Two common choices for ordering bytes of a 
multibyte object big endian (IBM 360) vs little endian (Intel 
x86).  Bi-endian (ARM, PowerPC)

int x = 0x01234567;   // assume &x = 0x100
0x100 0x101 0x102 0x103

little 0x67 0x45 0x23 0x01
big 0x01 0x23 0x45 0x67

Network code, Memory dumps,  and Advanced/Systems Programming



FIGURE 2.4 AND 2.5

• Playing with this code and understanding it in detail will pay 
dividends

1  #include <stdio.h>!
2! !
3  typedef unsigned char *byte_pointer;!
4! !
5  void show_bytes(byte_pointer start, int len) {!
6    int i;!
7    for(i=0; i<len; i++) !
8      printf(" %.2x", start[i]);!
9    printf("\n");!
10 }!
11! !
12 int main(void) {!
13   short x = 12345;!
14   short mx = -x;!
15   unsigned short ux = (unsigned short)x;!
16   unsigned short umx = (unsigned short)mx;!
17!
18   show_bytes((byte_pointer) &x, (sizeof(short)));!
19   show_bytes((byte_pointer) &mx, (sizeof(short)));!
20   show_bytes((byte_pointer) &ux, (sizeof(unsigned short)));!
21   show_bytes((byte_pointer) &umx, (sizeof(unsigned short)));!
22   return 1;!
23 }

bash-3.2$ gcc code1.c -o c1!
bash-3.2$ ./c1!
 39 30!
 c7 cf!
 39 30!
 c7 cf!
bash-3.2$ 

0x3039 0011 0000 0011 1001

0xCFC7 1100 1111 1100 0111

Why are the bytes reordered?

PRINTF IS YOUR FRIEND GET 
TO KNOW IT



REPRESENTING STRINGS 
(2.1.5)

ASCII:  Standard encoding of English characters, 
punctuation, and some special characters into byte 
values.	


!

String a sequence of ASCII Byte Values with a final 
Byte that has a 0 value to indicate the end of the 
string.	


!

!

int i=15;    // 0x0000000F -> 0x0F 0x00 0x00 0x00	


char str[] = “bugs”;  // ???

ASCII

http://en.wikipedia.org/wiki/File:ASCII_Code_Chart.svg

Lower Nibble

H
igh
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REPRESENTING CODE (2.1.6)

Hardware dependent encoding of machine’s operations into 
byte and multibyte values.  	



Stored Program seems obvious but was a big deal!  	



It also means that programs can be treated as data and 
programs can generate programs on the fly.	



We can have pointers to instructions sequences:  C function 
pointers!



BOOLEAN ALGEBRA (2.1.7)
ALGEBRA OF TRUTH=1 AND  FALSE=0

~ NOT:  ~X=Y  & AND:  X & Y = Z

X Y

0 1

1 0

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

| OR:  X | Y = Z
X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

^ XOR:  X^Y = Z
X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

Primitives for  
working with 

raw bit patterns 	


!

These are your 
building blocks!

C TWO KINDS OF BOOLEAN 
OPERATIONS (2.1.8, 2.1.9)

• BITWISE	



•  ~, |, &, ^	



• operate on vector of bits	



• result is a vector of bits	



!

!

• LOGICAL	



• !, &&, ||	



• 1=TRUE = X != 0  and 
0=FALSE = X == 0 	



• operates on integral types 
first map then apply boolean 
operation to produce 0|1	



• Conditional evaluation

BIT OPERATIONS (2.1.8)

‘C’ Expression Binary 
Expression Binary Result Hex Result

~0x41 ~[0100 0001] [1011 1110] 0xBE

~0x00 ~[0000 0000] [1111 1111] 0xFF

0x69 & 0x55    [0110 1001] 
& [0101 0101] [0100 0001] 0x41

0x69 | 0x55   [0110 1001] 	


| [0101 0101] [0111 1101] 0x7D



BIT VECTORS AND SETS
• Bit level operations to maintain and manipulate sets: | is union 

(A|B is union of A and B) and & is intersections (A&B is 
intersection of A and B) 	



• Each bit position is represents the presence of an element	



• Low level programming power and interfacing to machine 
hardware is all about bit level manipulation.	



• MASKING : a mask identifies a particular signals by having 
ones in the right position: 

X MASK X & MASK

0x8BADF00D 0xFF 0x0D

0x8BADF00D 0x000F000F 0x000D000D

SHIFT OPERATORS
• left shift : x << k : where 0 <= k <= n-1: x is shifted k bits to 

the left, dropping off the k most significant bits and filling the 
right end with k zeros.  	



•  right shift : x >> k : 2 types logical and arithmetic:	


• logical right shift: left end filled with k zeros 	


• arithmetic right shift: left end filled with k repetitions of most 

significant bit.  
x=[01100011] x=[10010101]

x<<4 [00110000] [01010000]

x>>4 (logical) [00000110] [00001001]

x>>4 
(arithmetic) [00000110] [11111001]

LOGICAL OPERATORS
‘C’ Expression Binary Expression Binary Result Hex Result

!0x41 ![0100 0001] [0000 0000] 0x00

!0x00 ![0000 0000] [0000 0001] 0x01

0x69 && 0x55      [0110 1001] && 
[0101 0101] [0000 0001] 0x01

0x69 || 0x55    [0110 1001] 	


|| [0101 0101] [0000 0001] 0x01

0x69 && (!0x55)       [0110 1001] 	


&& (![0101 0101]) [0000 0000] 0x00



UNSIGNED INTEGERS (2.2.2)

[0001]!
[0101]!
[1011]!
[1111]!

0! 1! 2! 3! 4! 5! 6! 7! 8! 9! 10! 11!12!13!14!15!16!

23 = 8!
22 = 4!
21 = 2!
20 = 1!

Encode a bit vector of length w “efficiently” into 
positive integers

UNSIGNED ADDITION

       !
    0  1  1  1!
  + 0  1  1  0 !
  ------------ !

UNSIGNED ADDITION

       !
    0  1  1  1!
  + 0  1  1  0 !
  ------------ !
             1



UNSIGNED ADDITION

       1!
    0  1  1  1!
  + 0  1  1  0 !
  ------------ !
          0  1

UNSIGNED ADDITION

    1  1!
    0  1  1  1!
  + 0  1  1  0 !
  ------------ !
       1  0  1

UNSIGNED ADDITION

    1  1!
    0  1  1  1!
  + 0  1  1  0 !
  ------------ !
    1  1  0  1



WHAT ABOUT NEGATIVE 
NUMBERS?

• How do we work with signed integers?	



• What do we have at our disposal?	



• What kind of properties would we like?

ALTERNATIVES

Unsigned ! Sign Magnitude   One's Comp. !    Two's Comp.  
! 000! ! ! 000 = +0! ! ! 000 = +0! ! ! 000 = +0  
! 001! ! ! 001 = +1! ! ! 001 = +1! ! ! 001 = +1   
! 010! ! ! 010 = +2! ! ! 010 = +2! ! ! 010 = +2    
! 011! ! ! 011 = +3! ! ! 011 = +3! ! ! 011 = +3   
! 100! ! ! 100 = -0! ! ! 100 = -3! ! ! 100 = -4         
! 101! ! ! 101 = -1! ! ! 101 = -2! ! ! 101 = -3         
! 110! ! ! 110 = -2! ! ! 110 = -1! ! ! 110 = -2          
! 111! ! ! 111 = -3! ! ! 111 = -0! ! ! 111 = -1 

ALTERNATIVES

Unsigned ! Sign Magnitude   One's Comp. !    Two's Comp.  
! 000! ! ! 000 = +0! ! ! 000 = +0! ! ! 000 = +0  
! 001! ! ! 001 = +1! ! ! 001 = +1! ! ! 001 = +1   
! 010! ! ! 010 = +2! ! ! 010 = +2! ! ! 010 = +2    
! 011! ! ! 011 = +3! ! ! 011 = +3! ! ! 011 = +3   
! 100! ! ! 100 = -0! ! ! 100 = -3! ! ! 100 = -4         
! 101! ! ! 101 = -1! ! ! 101 = -2! ! ! 101 = -3         
! 110! ! ! 110 = -2! ! ! 110 = -1! ! ! 110 = -2          
! 111! ! ! 111 = -3! ! ! 111 = -0! ! ! 111 = -1 



ALTERNATIVES

Unsigned ! Sign Magnitude   One's Comp. !    Two's Comp.  
! 000! ! ! 000 = +0! ! ! 000 = +0! ! ! 000 = +0  
! 001! ! ! 001 = +1! ! ! 001 = +1! ! ! 001 = +1   
! 010! ! ! 010 = +2! ! ! 010 = +2! ! ! 010 = +2    
! 011! ! ! 011 = +3! ! ! 011 = +3! ! ! 011 = +3   
! 100! ! ! 100 = -0! ! ! 100 = -3! ! ! 100 = -4         
! 101! ! ! 101 = -1! ! ! 101 = -2! ! ! 101 = -3         
! 110! ! ! 110 = -2! ! ! 110 = -1! ! ! 110 = -2          
! 111! ! ! 111 = -3! ! ! 111 = -0! ! ! 111 = -1 

WHICH ONE IS BEST?  WHY?
• Issues: order, number of zeros, ease of operations	



• Problems with SM and 1’s complement: 	



• two representations for zero	



• addition does not just work:

SM: 1 + -1 1’s complement: 1 + -1 

WHICH ONE IS BEST?  WHY?
• Issues: order, number of zeros, ease of operations	



• Problems with SM and 1’s complement: 	



• two representations for zero	



• addition does not just work:

  001!
  101!
—————!
 

SM: 1 + -1 
  001!
  110!
—————!
 

1’s complement: 1 + -1 



WHICH ONE IS BEST?  WHY?
• Issues: order, number of zeros, ease of operations	



• Problems with SM and 1’s complement: 	



• two representations for zero	



• addition does not just work:

  001!
  101!
—————!
  110

SM: 1 + -1 
  001!
  110!
—————!
  111

1’s complement: 1 + -1 

WHICH ONE IS BEST?  WHY?
• Issues: order, number of zeros, ease of operations	



• Problems with SM and 1’s complement: 	



• two representations for zero	



• addition does not just work:

  001!
  101!
—————!
  110

SM: 1 + -1 

1 + -1=-2???

  001!
  110!
—————!
  111

1’s complement: 1 + -1 

1 + -1=-0 close but still weird

2’s Complement: 	



To obtain negative of a number flip the bits and add 1	



-x = ~x + 1



MATHEMATICAL DEFINITION

So that half the patterns 
represent 	



1. 0 	



2. 1<=x<2w-1	



and the other half map to	


3. -2w-1	



4. (~x + 1)for1<=x<2w-1
~x + 1	



mappings

SIGNED INTEGERS (2.2.3)
sign bit

negative weight

a signed 
magnitude of 

w-1 bits

IMPORTANT NUMBERS
C data type 8 16 32 64

UMax 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF

255 65,535 4,294,967,295 18,446,744,073,709,551,615

Tmin 0x80 0x8000 0x80000000 0x8000000000000000

-128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

TMax 0x7F 0x7FFF 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF

127 32,767 2,147,483,647 9,223,372,036,854,775,807

-1 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF

0 0 0x00 0x0000 0x0000000000000000



‘C’ standard does not specify two’s comp 

C data type min max
char -127 127

unsigned char 0 255
short -32,767 32,767

unsigned short 0 65,535
int -32,767 32,767

unsigned 0 65,535
long -2,147,483,647 2,147,483,647

unsigned long 0 4,294,967,295
long long -((2^64) -1)/2 ((2^64)-1)/2

unsigned long long 0 (2^64)-1

however, ‘typical’  8, 16, 
32 and 64 bit two 

complement numbers 
can be expected	



<limits.h>

“CONVERSIONS” BETWEEN 
SIGNED AND UNSIGNED

1 #include <stdio.h>!
2!
3 int main(void) {!
4   short int v = -12345;!
5   unsigned short uv = (unsigned short) v;!
6   printf("v = %d, uv = %u\n”, v, uv);!
7   return 1;!
8 }

bash-3.2$ gcc -m32 code2.c -o c2!
bash-3.2$ ./c2!
v = -12345, uv = 53191!
bash-3.2$ 

1 #include <stdio.h>!
2!
3 int main(void) {!
4   unsigned  u = 4294967295u;!
5   int      tu = (int) u;!
6   printf("u = %u, tu = %d\n", u, tu);!
7   return 1;!
8 }

bash-3.2$ gcc -m32 code3.c -o c3!
bash-3.2$ ./c3!
u = 4294967295, tu = -1!
bash-3.2$

“CONVERSIONS” BETWEEN 
SIGNED AND UNSIGNED

1 #include <stdio.h>!
2!
3 int main(void) {!
4   short int v = -12345;!
5   unsigned short uv = (unsigned short) v;!
6   printf("v = %d, uv = %u\n”, v, uv);!
7   return 1;!
8 }

bash-3.2$ gcc -m32 code2.c -o c2!
bash-3.2$ ./c2!
v = -12345, uv = 53191!
bash-3.2$ 

1 #include <stdio.h>!
2!
3 int main(void) {!
4   unsigned  u = 4294967295u;!
5   int      tu = (int) u;!
6   printf("u = %u, tu = %d\n", u, tu);!
7   return 1;!
8 }

bash-3.2$ gcc -m32 code3.c -o c3!
bash-3.2$ ./c3!
u = 4294967295, tu = -1!
bash-3.2$

v = -12345 0xcfc7, uv = 53191 0xcfc7



“CONVERSIONS” BETWEEN 
SIGNED AND UNSIGNED

1 #include <stdio.h>!
2!
3 int main(void) {!
4   short int v = -12345;!
5   unsigned short uv = (unsigned short) v;!
6   printf("v = %d, uv = %u\n”, v, uv);!
7   return 1;!
8 }

bash-3.2$ gcc -m32 code2.c -o c2!
bash-3.2$ ./c2!
v = -12345, uv = 53191!
bash-3.2$ 

1 #include <stdio.h>!
2!
3 int main(void) {!
4   unsigned  u = 4294967295u;!
5   int      tu = (int) u;!
6   printf("u = %u, tu = %d\n", u, tu);!
7   return 1;!
8 }

bash-3.2$ gcc -m32 code3.c -o c3!
bash-3.2$ ./c3!
u = 4294967295, tu = -1!
bash-3.2$

v = -12345 0xcfc7, uv = 53191 0xcfc7

u = 4294967295 0xffffffff, tu = -1 0xffffffff

0!

2w–1!

2w!

Unsigned!
Two�s!
complement!0!

+2w–1!

–2w–1!

0!

2w–1!

2w!

Unsigned!

Two�s!
complement!0!

+2w–1!

–2w–1!

SIGNED VS UNSIGNED IN ‘C’

Expression Type Evaluation
0 == 0U unsigned 1
-1 < 0 signed 1
-1< 0U unsigned 0*

2147483647>-2147483647-1 signed 1
2147483647U>-2147483647-1 unsigned 0*
2147483647>(int)2147483648U signed 1*

-1 > -2 signed 1
(unsigned) -1 > -2 unsigned 1

When either operand of a comparison is unsigned, the 
other operand is implicitly cast to unsigned.



EXPANSION (2.2.6) 
zero extension signed extension

expanding unsigned 
representation by 

simply adding leading 
zero’s as needed

expanding signed 
representation by 

replicating sign bit as 
needed

  char c = x;!
  int i = c;!
  printf("%d %d\n", c, i);!
  show_bytes((byte_pointer)&c, sizeof(c));!
  show_bytes((byte_pointer)&i, sizeof(i));

These rules result in what you expect
2.2.6 presents the simple proof based using 

induction on the definitions

THERE ARE STILL THINGS TO 
BE CAREFUL OF

  short sx = -12345;!
  unsigned uy = sx;   // (unsigned) (int) sx;!
  // unsigned uy = (unsigned) (unsigned short) sx;!
  !
  printf("uy = %u:\t", uy);!
  show_bytes((byte_pointer)&uy, sizeof(unsigned));

default is to first do size expansion and then 
do assignment

This is not the same as doing the unsigned 
interpretation and then the expansion	



 	


The second preserves the bit representation 

vs the first will sign extend and then use this as 
the pattern for the assignment

TRUNCATION (2.2.7) 

Important relationship!	


Truncating x to k bits is equivalent to x mod 2k

truncating w bit number is means we drop the high 
order w-k bits 

remainder of a division by 2k

  int x = 53191;!
  short sx = (short) x;!
  int y = sx;          !
  printf("%d %d %d\n", x, sx, y);

bash-3.2$ gcc trunc.c -o t!
bash-3.2$ ./t!
53191 -12345 -12345



2 COMPLEMENT SUMMARY
binary w length bit vector

binary to unsigned int

binary to signed int

‘conversion’ in C is 
reinterpret binary vector

Know critical 
numbers and Rules 
for Expanding and 

Truncating bit vectors 
for both unsigned 

and signed

relationships 


