INTIEGER ARITHMETI

CAS CS 210 Computer System
CSAPP 2.3

BASICS OF ADDITION
SRR bEb="0b

y | x
+ addition of 3 bits O e
| 0 |
Ib+Ib+ Ib=(lb+Ib)+Ib=10b+Ib=1Ib | o | |
. o | | .
addition of vectors of bits: . - i e
OVERFLOW

1110 1110| 1110| 1110| 1110 word size of inputs
+0101 0101| 0101| 0101 0101

il ia 011 10011 overflows

At most | bit is need to track overflow

UNSIGNED ADDITION

unsigned long long;
unsigned int;
unsigned short;
unsigned char;




000
000

0 4 0 000=0
000
= 1
w=3 001
23=8 i 1 001 2 010=2
Unsigned: ‘iz
min=000 G 1 ot 7 111=7
max=23-1 111
111
=1000-1 111

7 1 001 8 000=0

=111
1000
1
110
6 4 100 10 010=2

1010
111
111
7 7 111 14 110=6

1110

Unsigned Addition

Operands: w bits

True Sum: w1 bits wrv BOTTT === 1117
Discard Carry: w bits UAdd,(u ,v) OIT———"T1TT]

Standard Addition Function
® Ignores carry output

Implements Modular Arithmetic
s = UAdd(u,v) = u+v mod2v

OVERFLOW

* OVERFLOW: when the full integer result cannot fit within the
word size limits of the data type

* occurs when x+y >= 2%

* C does not signal overflow errors they occur silently.
Unsigned overflow can be detected if (x+y) < x

* We will see that most processors do indicate if an overflow
occurs

* Both addition and multiplication can suffer from it




Visualizing Unsigned Addition

Wraps Around Overflow
® |f true sum = 2" \
= At most once

UAdd,(u, v)

True Sum

w1
2 Overflow

v _\_I

Modular Sum

SIGNED ADDITION

long long;
AliiE g
short;
char;

000
0 0 00 0 000=0
000

010

2 it L 3 011=3

W=3 011
23=8 11
Signed: 3 1 o 4 100=-4
min=100=-4 100
max=011=3 Nt

-3 -1 111 -4 100=-4

1100

100
-4 -1 111 -5 011=3

1011

100
-4 -4 100 -8 000=0

1000




Two’s Complement Addition

Operands: w bits

True Sum: w1 bits ey MO === 1T
Discard Carry: w bits TAdd, (1 , v) OTT———~"TTT1

TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Willgive s == t

OVERFLOW & “UNDER-FLOW"

* OVERFLOW: when the result exceeds 2's Complement Max
* UNDERFLOW: when result exceeds 2's Complement Min

* C does not signal either errors they occur silently.

*» Again most processors do indicate if either occurs

* Both addition and multiplication can suffer from it

Detecting 2’s Comp. Overflow

Task -
= Given s = TAdd,(u, V) PosOver
= Determine if s =Add,(u, v) 2wt
= Example

int s, u, v;

s =u+v;

Claim
= Qverflow iff either:
u,v<0, =0 (NegOver)
u, 1>= 0, s<0 (PosOver)
ovf = (u<0 == v<0) && (u<0 '= s<0);
state expression in english

(both +or both -) && (sum does not match sign of u)

NegOver




Visualizing 2’s Comp. Addition

NegOver

Values \
= 4-bit two’s comp.

= Range from -8 to +7

TAdd,(u, V)

Wraps Around
= If sum > 2+
© Becomes negative
©® At most once
B |If sum <-2*"
©® Becomes positive
© At most once

u . PosOver

MULTIPLYING BY A
CONSTANT (2.3.6)

* HW support for multiplication but slow compared to ~, &, |,
+, >> <<

* So when it can the compiler tries to replace multiplication
with equivalent computations using the more primitive ops
* key rule used is that both for unsigned and signed
x * 2k = x << k for 0<= k < w (see 2.3.6 for proof):
eg 3*¥2=3<<|and3*4=(383<<1)<<|=3<<2
CompllenXi i (123 + 22 + 21 )=(x<<3) + (x<<2)EtE(E=aIy)

X* 14 or even better
X £ (28 - 21 )= (x<<4) — (=)

EIVIDING BY PWRS OF 2 (21598

Integer division defined to always round towards zero
7/2=3and-7/2 = -3
* like multiplication we would like to exploit right shifts to replace
divisions by powers of two: x / 2€ = x >>k : 0>k<w: eg.
7/2 27 >> | [0 11]>> | —»[00]1]=3
« this works for positive x as truncation will round towards O but it
does not work for negative x that requires rounding eg:
-7/2 = [1001]/2 supposed be -3 but

[1001]>> | =[1100] = -4
* truncation operates like floor but for negative division we need
ceiling,




EIVIDING BY PWRS OF 2 (21598

Integer division defined to always round towards zero
7/2=3and-7/2 = -3
* like multiplication we would like to exploit right shifts to replace
divisions by powers of two: x / 2€ = x >>k : 0>k<w: eg.
7/2 27 >> | [0 1]>> | =»[00]1]=3
« this works for positive x as truncation will round towards O but it
does not work for negative x that requires rounding eg:
-7/2 = [1001]/2 supposed be -3 but

[1001]>> | =[1100] = -4
* truncation operates like floor but for negative division we need
ceiling. We can exploit the fact that: [z /y]| = |(z +y — 1)/y]
sothat x / 2% = (x<0 ? x+(1l<<k)-1 : x) >> k

for 2's comp machine using arithmetic right shifts

SRIEF INTRO TO FLOATRINS
POINT

REAL NUMBERSH
FEGATING POINTE

|EEE Standard 754
u i in 1985 as unif d for ing point
arithmetic
© Before that, many idiosyncratic formats
= Supported by all major CPUs

Driven by Numerical Concerns
= Nice standards for rounding, overflow, underflow
= Hard to make go fast

. :

ysts p over types in
defining standard




Fractional Binary Numbers

Representation
= Bits to right of “binary point” represent fractional powers of 2

Representable Numbers

Limitation
= Can only exactly represent numbers of the form x/2¢
= Other bers have repeating bit rep i
Value Representation
13 0.0101010101[01]..,
1/5 0.001100110011[0011]..,
110 0.0001100110011[0011]..,

Summary of Floating Point
Real Number Encodings

—inf
[

o /N
RN 0 40 ey

-Normalized | -Denorm ;. , ; +Denorm, +Normalized +|'ir|1f
T H T ™




Tiny Floating Point Example

8-bit Floating Point Representation
= the sign bit is in the most significant bit.
= the next four bits are the exponent, with a bias of 7.
= the last three bits are the frac

® Same General Form as IEEE Format
= normalized, denormalized
= representation of 0, NaN, infinity

76

32

0

s Xp frac

Values Related to the Exponent

Exp exp

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

E 2=

-6 1/64

-6 1/64

-5 1/32

-4 1/16

-3 1/8

-2 1/4

-1 1/2
] 1

+1 2

+2 4

+3 8

+4 16

+5 32

+6 64

+7 128

n/a

(denorms)

(inf, NaN)

Dynamic Range

s exp frac E Value
0 0000 000 -6 0
0 0000 001 -6 1/8%1/64 = 1/512 “closest to zero
Denormalized 0 0000 010 -6 2/8%1/64 = 2/512
numbers
0 0000 110 -6 6/8%1/64 = 6/512
0..0000..111......=6 7/8*1/64..=.7/512.77.]argest denorm
0 0001 000 -6 8/8*1/64 = 8/512 ~— smallest norm
0 0001 001 -6 9/8%1/64 = 9/512
0 0110 110 -1 14/8%1/2 = 14/16
Normalized © 0110 111 -1 15/8%1/2 = 15/16 * closestto 1 below
ormalized 5 0111 000 0 8/8*1 =1
numbers ;177 001 o 9/8%1 = g/g + closestto 1 above
0 0111 010 0 10/8%1 = 10/8
0 1110110 7 14/8%128 = 224
01110 111 7 15/8*128 = 240 largest norm
01111 000 n/a  inf




Distribution of Values

6-bit IEEE-like format
= e = 3 exponent bits
= f =2 fraction bits
= Biasis 3

Notice how the distribution gets denser toward zero.

A —h—h— kA& A A A — A —A—&

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized Infinity‘

Distribution of Values
(close-up view)

6-bit IEEE-like format
® e =3 exponent bits
® f =2 fraction bits
® Biasis 3

A A A A A O 00O ¢t bk kA
-1 -0.5 0 0.5 1
‘0 Denormalized A Normalized @ Inﬁnﬂy‘

EXTRA




it DOES 2'S COMPLEMENES
WORK

WHY IS TAdd SAME AS UAdd?
Sinilebit uaction M;lgi)bit_su?gactio;

0|00 i) = iy = iy = @
IS=0= |

ol - \Nhgt Dogs -x mean? O subfcract %

| Fancidar Rinary ~ase of -5 with w=4

I |0
Remember h I0b-1=1  -action works
Borrow as needed ana marking extra subtraction of@

0000 oo?’o o%o %0 %o

subtract 0101 0101 @@l 0101 0101

GIVEN FIXED WIDTH “w"

UIU0IORE 10,0010 subtract from 2% is
sulsiiifac (@Il 0101 the same
BRI SIS 01011

So a negative of number
in a computer is the same add{ e |
as subtracting it from 2% * subtract 11114=2"- |
AND 0101
2rERT- e




BUT

add{ 1=+ | by Associativity
subtract 1111«@m2v- | (1 + 1111) - 010IN=
0101 I Ll = @I )
for any bin_a_r;z_; of length w bits N
(2¥ - 1) - x is the same as
inverting all the bits of x (eg FAATAATAAW
~X). Consider every bitwise R0 |
|
|

subtraction will result in 0 0
where there is a 1 in x and 1 |
every where there is a 0 in x.

Therefore :
(1L 4 ILiEL) - = @Ilik &= Al 55 =il
=1 + 1010
= il

SO

So a negative of number in a computer is the same as
subtracting it from 2% = (2¥- |) + |

i
0000 10000 __ {{Fllll . 1
SERO0NE - 01017 = 010115 iSOG

taking the negative of a number; that is, subtracting a
number from 0O, is the same as inverting the bits and adding
one which is the definition of 2's complement.

SO a 2's complement is mathematically the negative of the
number!

BENSTRUCTED

w—2

BT, (7)) = —z 120 D)
=0

I 0 (

o | <-x<zw'_>i

| | 1000

3 =% : 1001 9 -7
1010 10 -6
1011 1 -5

4, (~x + Dforl <=x<2%'—{ [T [ | =
1101 13 -3
1110 14 -2
1111 -1

Since ~x+ 1 is the negative o x'snormal
binary addition (UAdd) just works!




MULTIPLICATION

WINGIGNED MULTIPLICATHSI

(2.34)

0<z,y < 211:71*0 <zy< (210_1)2 = 22ur_2u‘+1+1

This could require 2*w bits to represent

* straight forward truncation of x times y to w bits:

T %y = (7 - y)mod2"

O S-COMPLEMENES
NMELTIPLICATION (258

bit-level representation of unsigned and 2's complement
multiplication the same (see 2.3.5 for simple proof):

@ 5y = U2Ty(( - y)mod2")

some simple 3 bit examples

mode X y X *y truncx *y
unsigned| 5 | [1017 | 3 | o1y | 15 [porttiy| 7 |
2'scomp.| -3 | [I01] 3 [y | -9 |[H1ortg] -t [
unsigned | 4 | [100] 7/ [111] | 28 |[011100] 4 [100]
2scomp| 4 | (100 | -1 | 1117 | 4 [foootoo)| 4 | 100]
unsigned | 3 [o11] 8 [0l 9 [[001001] | [001]
scomp| 3 | [011] | 3 | [or13 | 9 |fotoonn| 1 | oon




FLOATING POINT

Floating Point Representation

Numerical Form
u_{s | 2F
®Sign bit s determines whether number is negative or positive
e®Significand M normally a fractional value in range [1.0,2.0).
®Exponent E weights value by power of two

Encoding

III exp | frac

= MSB is sign bit
= exp field encodes E
® frac field encodes M

Floating Point Precisions

Encoding

|1| exp | frac

= MSB is sign bit
® exp field encodes E
® frac field encodes M

Sizes

= Single precision: 8 exp bits, 23 frac bits
32 bits total

= Double precision: 11 exp bits, 52 frac bits
964 bits total

= Extended precision: 15 exp bits, 63 f£rac bits
©®Only found in Intel-compatible machines
®Stored in 80 bits

» 1 bit wasted




“Normalized” Numeric Values

Condition
® exp=000...0 and exp = 111...1

Exponent coded as biased value
E = Exp - Bias
® Exp : unsigned value denoted by exp
® Bias : Bias value
» Single precision: 127 (Exp: 1...254, E: -126...127)
» Double pret n: 1023 (Exp: 1...2046, E: -1022...1023)
»in general: Bias = 2°' - 1, where e is number of exponent bits

Significand coded with implied leading 1

M = 1.xxx..x,

.0)
®Maximum when 111...1 (M=2.0-0)
®Get extra leading bit for “free”

Normalized Encoding Example

Value
Float F = 15213.0;
= 15213,, = 1110110101101, =1.1101101101101, X 22

Significand
M = 1.1101101101101,
frac= 11011011011010000000000,
Exponent
E = 13
Bias = 127
Exp = 140 = 10001100,
Floating Point Representation (Class 02):
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000
0000
140: 100 0110 0
15213: 1110 1101 1011 01

Denormalized Values

Condition
" exp =000...0

Value
= Exponent value E = —Bias + 1
= Significand value M= 0.xxx...x,
® xxx...x: bits of frac

Cases
® exp =000...0, frac = 000...0
® Represents value 0
® Note that have distinct values +0 and -0
® exp = 000...0, frac =000...0
® Numbers very close to 0.0
® Lose precision as get smaller
® “Gradual underflow”




Special Values

Condition
" exp=111..1

Cases
® exp=111...1, frac = 000...0
® Represents value +/— (infinity)
® Operation that overflows
® Both positive and negative

¥ exp =111...1, frac =000...0
© Not-a-Number (NaN)
® Represents case when no numeric value can be determined

Special Properties of Encoding

FP Zero Same as Integer Zero
= All bits =0

Can (Almost) Use Unsigned Integer Comparison
= Must first compare sign bits
= Must consider -0 =0
= NaNs problematic
© Will be greater than any other values
® What should comparison yield?
= Otherwise OK
©® Denorm vs. normalized
©® Normalized vs. infinity




