
INTEGER ARITHMETIC
CAS CS 210 Computer System 	

CSAPP 2.3

BASICS OF ADDITION
•1+ 1 = 2 : 1b + 1b = 10b	

•addition of 3 bits

1b + 1b + 1b = (1b + 1b) + 1b = 10b + 1b = 11b	

•addition of vectors of bits:

x y x+y
0 0 0
1 0 1
0 1 1
1 1 10

Result can
OVERFLOW	

word size of inputs

 1 !
 1110!
 0101 !
-----!
 011

 1110!
 0101!
-----+

 1110!
 0101!
-----!

1

 1110!
 0101!
-----!

11

11 !
 1110!
 0101 !

10011

carry

overflows

At most 1 bit is need to track overflow

UNSIGNED ADDITION
unsigned long long;!

unsigned int;!
unsigned short;!
unsigned char;

x y x+y result 3bit

0 0

 000!
 000!
—————!
 000

0 000=0

1 1

 1 !
 001!
 001!
—————!
 010

2 010=2

6 1

 110!
 001!
—————!
 111

7 111=7

7 1

 111 !
 111!
 001!
—————!
 1000

8 000=0

6 4

 1 !
 110!
 100!
—————!
 1010

10 010=2

7 7

 111 !
 111!
 111!
—————!
 1110

14 110=6

w=3!
23=8!
Unsigned:!
min=000!
max=23-1!
 =1000-1!
 =111

OVERFLOW
• OVERFLOW: when the full integer result cannot fit within the

word size limits of the data type	

• occurs when x+y >= 2w 	

• C does not signal overflow errors they occur silently.
Unsigned overflow can be detected if (x+y) < x	

• We will see that most processors do indicate if an overflow
occurs	

• Both addition and multiplication can suffer from it

SIGNED ADDITION
long long;!

int;!
short;!
char;

x y x+y result 3bit

0 0

 000!
 000!
—————!
 000

0 000=0

2 1

 010!
 001!
—————!
 011

3 011=3

3 1

 11 !
 011!
 001!
—————!
 100

4 100=-4

-3 -1

 111 !
 101!
 111!
—————!
 1100

-4 100=-4

-4 -1

 1 !
 100!
 111!
—————!
 1011

-5 011=3

-4 -4

 1 !
 100!
 100!
—————!
 1000

-8 000=0

w=3!
23=8!
Signed:!
min=100=-4!
max=011=3

OVERFLOW & “UNDER-FLOW”

• OVERFLOW: when the result exceeds 2’s Complement Max	

• UNDERFLOW: when result exceeds 2’s Complement Min	

• C does not signal either errors they occur silently. 	

• Again most processors do indicate if either occurs	

• Both addition and multiplication can suffer from it

(both +or both -) && (sum does not match sign of u)
state expression in english

MULTIPLYING BY A
CONSTANT (2.3.6)

• HW support for multiplication but slow compared to ~, &, |,
+, >>, <<	

• So when it can the compiler tries to replace multiplication
with equivalent computations using the more primitive ops	

• key rule used is that both for unsigned and signed
x * 2k = x << k for 0<= k < w (see 2.3.6 for proof):
eg. 3 * 2 = 3 << 1 and 3 * 4 = (3 << 1) << 1 = 3<<2

x*14;
compilerx * (23 + 22 + 21)=(x<<3) + (x<<2) + (x<<1)

x * (24 - 21)= (x<<4) - (x<<1)
or even better

DIVIDING BY PWRS OF 2 (2.3.7)

• like multiplication we would like to exploit right shifts to replace
divisions by powers of two: x / 2k → x >>k : 0>k<w: eg. 	

 7/2 →7 >> 1→[0111] >> 1 →[0011]=3	

• this works for positive x as truncation will round towards 0 but it
does not work for negative x that requires rounding eg.:
 -7/2 = [1001]/2 supposed be -3 but

[1001] >> 1 = [1100] = -4	

• truncation operates like floor but for negative division we need

ceiling. 	

Integer division defined to always round towards zero
7/2 = 3 and -7/2 = -3

DIVIDING BY PWRS OF 2 (2.3.7)

• like multiplication we would like to exploit right shifts to replace
divisions by powers of two: x / 2k → x >>k : 0>k<w: eg. 	

 7/2 →7 >> 1→[0111] >> 1 →[0011]=3	

• this works for positive x as truncation will round towards 0 but it
does not work for negative x that requires rounding eg.:
 -7/2 = [1001]/2 supposed be -3 but

[1001] >> 1 = [1100] = -4	

• truncation operates like floor but for negative division we need

ceiling. We can exploit the fact that:
so that x / 2k →(x<0 ? x+(1<<k)-1 : x) >> k

Integer division defined to always round towards zero
7/2 = 3 and -7/2 = -3

for 2’s comp machine using arithmetic right shifts

BRIEF INTRO TO FLOATING
POINT

REAL NUMBERS :
FLOATING POINT

EXTRA

WHY DOES 2’S COMPLEMENT
WORK

What Does -x mean? 0 subtract x

Multi-bit subtraction!
10b - 1b = 1!

10 - 1b - 1b = 0

Borrow as needed and marking extra subtraction of 1

WHY IS TAdd SAME AS UAdd?

Consider Binary case of -5 with w=4

 0000!
 0101!

subtract

a b a-b
0 0 0
1 0 1
0 1 -1
1 1 0

Remember how long hand subtraction works

Single-bit subtraction

 1!
 0000!
 0101 !
-----!
 1

 11!
 0000!
 0101 !
-----!
 11

111!
 0000!
 0101 !
-----!
 011

1111!
 0000!
 0101 !
 -----!
 1011

10b - 1 = 110b - 1 = 110b - 1- 1 = 010b - 1 = 1

1 1 1 1

GIVEN FIXED WIDTH “W”
1111!

 0000!
 0101 !
 -----!
 1011

1111 !
 10000!
 0101 !
 ----- !
 01011

= subtract from 2w is
the same

So a negative of number
in a computer is the same
as subtracting it from 2w	

AND	

2w = 2w - 1 + 1

subtract

 1!
 1111!
 0101!

subtract 2w - 1add + 1{{

BUT
 1!
 1111!
 0101!

subtract 2w - 1add + 1{{ by Associativity!
(1 + 1111) - 0101 =
1 + (1111 - 0101)

for any binary x of length w bits!
(2w - 1) - x is the same as

inverting all the bits of x (eg
~x). Consider every bitwise
subtraction will result in 0
where there is a 1 in x and 1
every where there is a 0 in x.

Therefore :!
(1 + 1111) - 0101 = 1 + ~0101 !
 = 1 + 1010 !
 = 1011

a b a-b
0 0 0
1 0 1
0 1 -1
1 1 0

SO
So a negative of number in a computer is the same as

subtracting it from 2w = (2w - 1) + 1

 0000!
 0101!

-
 1!
 1111!
 0101!

 10000!
 0101!

= =
{

taking the negative of a number, that is, subtracting a
number from 0, is the same as inverting the bits and adding

one which is the definition of 2’s complement.	

SO a 2’s complement is mathematically the negative of the

number!

= 1!
 ~0101!

- +
+{-

CONSTRUCTED
!

!

!

1. 0 	

2. 1<=x<2w-1	

!

3. -2w-1	

4. (~x + 1)for1<=x<2w-1
~x + 1	

mappings

Since ~x+1 is the negative of x normal
binary addition (UAdd) just works!

MULTIPLICATION

UNSIGNED MULTIPLICATION
(2.3.4)

• straight forward truncation of x times y to w bits:

This could require 2*w bits to represent

TWO’S-COMPLEMENT
MULTIPLICATION (2.3.5)

bit-level representation of unsigned and 2’s complement
multiplication the same (see 2.3.5 for simple proof):

mode x y x ・y trunc x ・y
unsigned 5 [101] 3 [011] 15 [001111] 7 [111]
2’s comp. -3 [101] 3 [011] -9 [110111] -1 [111]

unsigned 4 [100] 7 [111] 28 [011100] 4 [100]
2’s comp. -4 [100] -1 [111] 4 [000100] -4 [100]

unsigned 3 [011] 3 [011] 9 [001001] 1 [001]
2’s comp. 3 [011] 3 [011] 9 [001001] 1 [001]

some simple 3 bit examples

FLOATING POINT

