R

FIACHINE LEVS

i

R

s

-NTATION |

@ @) [Complitci@s /Sichs

Some slides based on CMU Slides

CShARIPZs (i Sl o

YAl SACHER
WHAT IS T DOING?

RELATIVE PER

(8008)

1972

A 4 1
1977 1978 1979

1
1974

YEARINTRODUCED

Figure 2-4. Relative Performance of the
8086 and 8088

2.2 rocss rit -

§ Microprocessors generally execute a program by _
i repeatedly cycling through the steps .shown below %
| (this description is somewhat simplified):

1. Fetch the next instruction from memory.

2. required by

Read an operand (if

the §
instruction). ‘

2-3

8086 AND 8088 CENTRAL PROCESSING UNITS

Execute the instruction.

Write the (f
instruction).

3.
¥ 4.

result required by

the

In previous CPUs, most of these steps have been
performed serially, or with only a single bus cycle
fetch overlap. The architecture of the 8086 and
8088 CPUs, while performing the same steps,
allocates them to two separate processing units
within the CPU. The execution unit (EU) executes
instructions; the bus interface unit (BIU) fetches
instructions, reads operands and writes results.

The two units can operate independently of one
another and are able, under most circumstances,
to extensively overlap instruction fetch with exe-
cution. The result is that, in most cases, the time
normally required to fetch instructions ‘‘dis-
appears’’ because the EU executes instructions
that have already been fetched by the BIU. Figure
2-5 illustrates this overlap and compares it with
traditional microprocessor operation. In the
example, overlapping reduces the elapsed time
required to execute three instructions, and allows
two additional instructions to be prefetched as
well.

The processor causes the system to perform the desired operations by
reading the first instruction in the program, and performing the very simple
task dictated by the specific pattern of bits in this instruction (referred

to as '"executing" that instruction). It then goes on to the next instruc-

f Thls 51mple operatlon of fetchlng ar.

‘tlonrln tne program‘and executes 1t.

] 1nstruct10n and executlng 1t is performed over and over, each t1me on the
. —— Mp_’ﬂ_ﬁﬁvm__,_——w»--—*—* -

next instruction in sequence. In this way the program 1nstructs the pro-

m————— — e

cessor to brlng about the de51red system operatlon.

TH

O IOR

SEiE L OO

B
&

ROGRAM

STOR

PROGRAMS
(INSTRUCTIONS)

N
BOTH
STORED IN
MEMORY
MODEL EM

L

PROGRAM CONCESS

CPU -- INST

DATA

UNIFIED PROCESSING

BODIED BY
 RUC HOINES

‘ JUST ANO
OF DATA

| HER FCDIRE

THE H

FE OO

_ Instruction
| Fetch

v

"ART OF MACHINE
CPU Execution Cycle

Instruction
Decode

¢ Obtain instruction from program

v

Operand
Fetch

storage
¢ Determine required actions and

v

Execute
v

Result
Store
i

instruction size
¢ Locate and obtain operand data
¢ Compute result value
¢ Deposit results in storage for later use

Next
Instruction

¢ Determine successor instruction

EXEC

UTION UNIT (EU)

BUS INTERFACE UNIT (BIU)

SENERAL SEGMENT
REGISTERS ‘ REGISTERS
> 5 INSTRUCTION
| POINTER
| P
| 4
— — | GENERESS MULTIPLEXED BUS
AND BUS P
1 B j B | CONTROL
> -
[7 OPERANDS I
b
2 3 |
J INSTRUCTION
- A 4 | QUEUE
g SN

sasceor[[T bl [rp T BT]

|

] accumuraToR

“]POINTER

BASE

BP POINTER

s SOURCE
INDEX

oI DESTINATION
INDEX
CODE

cs SEGMENT
DATA

DS SEGMENT
STACK

ss SEGMENT
EXTRA

Es SEGMENT

A INSTRUCTION
A POINTER

CF] FLAGS

DATA BUS]
g 8 g g g 1 & @ it
INDEX INDEX otk AU K— A PCL PCH 3
X Y s
| | INTERNAL ADL |
| A
[INTERNAL ADH]
ABL
AV4
MEMORY
7 0
f
!.. ~ A J ACCUMULATOR
? 0
| Y INDEX REGISTER Y
? i
X INDEX REGISTER X
15 7 0
PCH I PCL PROGRAM COUNTER
!
| o1 S | STACK POINTER
r:' o =11 '
‘ IGTV]]8 D1 [Z C PROCESSOR STATUS REGISTER, "P*
[L_* CARRY

— ZERO
‘——— INTERRUPT DISABLE
[DECIMAL MODE

l BREAK COMMAND

— UNUSED
OVERFLOW
— e NEGATIVE

Table 5-2 W65C02S OpCode Matrix

MSD W65C02S OpCode Matrix MSD

0 1 2 4 5 6 7 8 9 A B C D E F

0 BRK | ORA TSB | ORA | ASL |RMBO| PHP | ORA | ASL TSB | ORA | ASL | BBRO 0
a (zp,x) zZpe zp zp zZp e S # A ae a a re

1 BPL | ORA | ORA TRB | ORA | ASL |RMB1| CLC | ORA | INC TRB | ORA | ASL | BBR1 1
r (zp)y | (zp) * zpe | zZpX | zpX | zpe i ay A = ae a,x a,x re

5 JSR | AND BIT | AND | ROL |{RMB2| PLP | AND | ROL BIT | AND | ROL | BBR2 9
a (zp,x) zp zp zp Zp e S # A a a a re

3 BMI | AND | AND BIT | AND | ROL |RMB3| SEC | AND | DEC BIT | AND | ROL | BBR3 3
r (zp),y | (zp) * zZp,Xxe | zZpX | zpX | zpe | a,y A ax * a,x a,x re

4 RTI | EOR EOR | LSR |RMB4| PHA | EOR | LSR JMP | EOR | LSR | BBR4 4
s (zp,x) zp zp Zp e s # A a a a re

5 BVC | EOR | EOR EOR | LSR |RMB5| CLI | EOR | PHY EOR | LSR | BBR5 5
r (zp).y | (zp) * zZp,X zZp,X zZp e i a,y Se a,x a,x re

6 RTS | ADC STZ | ADC | ROR |RMB6| PLA | ADC | ROR JMP | ADC | ROR | BBR6 6
s (zp,x) zZp e zp zp zZp e s # A (a) a a re

7 BVS | ADC | ADC STZ | ADC | ROR |RMB7| SEI | ADC | PLY JMP | ADC | ROR | BBR7 7
r (zp).y | (zp) * zZp,xe | zZpX | zpX | zpe i ay Se (ax)*| ax a,x re

8 BRA | STA STY | STA | STZ |SMBO | DEY | BIT | TXA STY | STA | STX | BBSO 8
re (zp,x) zp zp zp zZp e i # i ae a a re

9 BCC | STA | STA STY | STA | STZ |SMB1| TYA | STA | TSX STZ | STA | STZ | BBS1 9
r (zp)y | (zp) * ZpX | zZp,X | zpy | zpe i ay i a a,x a,xe re

A LDY | LDA | LDX LDY | LDA | LDX |SMB2| TAY | LDA | TAX LDY | LDA | LDX | BBS2 A
(zp,x) | #= zp zp zp Zp e i # i a a a re

B BCS | LDA | LDA LDY | LDA | LDX |SMB3| CLV | LDA | TSX LDY | LDA | LDX | BBS3 B
r (zp),y | (zp) * ZpX | zZpX | zZpy | zpe i Ay i a,x a,x a,x re

c CPY | CMP CPY | CMP | DEC |SMB4| INY | CMP | DEX | WAI | CPY | CMP | DEC | BBS4 c
(zp,x) zp zp zp zZp e i # i le a a a re

D BNE | CMP | CMP CMP | DEC |[SMB5| CLD | CMP | PHX | STP CMP | DEC | BBS5 D
r (zp)y | (zp) * ZpX | Zp)X | zpe i ay Se le a,x a,x re

E CPX | SBC CPX | SBC | INC |SMB6| INX | SBC | NOP CPX | SBC | INC | BBS6 E
(zp,x) zp zp zp zZp e i # i a a a re

F BEQ | SBC | SBC SBC | INC |SMB7| SED | SBC | PLX SBC | INC | BBS7 F
r (zp)y | (zp) * ZpX | ZpX | zpe i ay Se ax a,x re
0 1 2 4 5 6 7 8 9 A B C D E F

Assembly Programmer’s View

CPU Memory
Addresses
PC Registers '| Object Code
. Data | Program Data
Condition Instructions SOLLIL
Codes)

Stack
m Programmer-Visible State

" PC: Program counter

» Address of next instruction
= Called “EIP” (IA32) or “RIP” (x86-64)

= Register file

" Memory

= Byte addressable array

» Heavily used program data

" Condition codes

. . = Code, user data, (some) OS data
» Store status information about most

recent arithmetic operation * Includes stack used to support

» Used for conditional branching procedures

AS PROGRAMM

RS WHAT

HAVE WE BEEN

Fi STRE 1

DOING ALL

HAVE WE REALLY BEEN

PROGRAMMI

NG THE

£ OMPU | B

Turning C into Object Code

= Codein files

pl.c p2.c

= Compile with command:

= Use optimizations (-O)

= Put resulting binary in file p

text

text

binary

binary

C program (pl.c p2.c)

\ 4

Compiler (gcc -S)

Asm program

(pl.s p2.5s)

Assembler (gcc or as)

Object program (pl.o p2.0)

Linker (gcc or 1d)

Executable

program (p)

gce -0 pl.c p2.c -0 p

Static libraries

(.a)

Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int x, int y) sum:
{ pushl 3ebp
int t = x+y; movl %esp, 3ebp
return t; movl 12 (%ebp) , 3eax
} addl 8 (%ebp) , Seax
movl 3%ebp, sesp
//5{;opl sebp
ret

Obtain with command /

Some compilers use single

gcec -0 -S) . .,
instruction “leave

code.cC

Produces file code. s

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, or 4 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes

m No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
" Load data from memory into register
= Store register data into memory

m Transfer control
" Unconditional jumps to/from procedures
= Conditional branches

Object Code

Code for sum

m Assembler

0x401040 <sum>: i
" Translates .s into .o

0x55
0x89 = Binary encoding of each instruction
Oxe5 = Nearly-complete image of executable code
0x8b
0245 = Missing linkages between code in different
0xOc files
0x03 m Linker
0x45
= Resolves references between files
0x08 e Total of 13 bytes
0x89 Y = Combines with static run-time libraries

Oxec ° Each instruction
0x5d 1, 2, or 3 bytes

Oxc3 e Starts at address
0x401040 = Linking occurs when program begins

execution

= E.g.,codeformalloc, printf

= Some libraries are dynamically linked

Machine Instruction Example

int t = x+y;

addl 8 (%ebp) , Seax

Similar to expression:
X +t= y
More precisely:
int eax;
int *ebp;
eax += ebp[2]

0x401046: 03 45 08

m C Code

= Add two signed integers

m Assembly
= Add 2 4-byte integers
= “Long” words in GCC parlance
= Same instruction whether signed

or unsigned
" Operands:
x: Register eax
y: Memory M[%ebp+8]
t: Register Teax

— Return function value in $eax

m Object Code

= 3-byte instruction
® Stored at address 0x401046

Disassembling Object Code

Disassembled

00401040 < sum>:
0: 55 push %ebp
1: 89 e5 mov %esp, $ebp
3: 8b 45 Oc mov Oxc (%ebp) , seax
6: 03 45 08 add 0x8 (%ebp) , $eax
9: 89 ec mov %ebp, Sesp
b: 5d pop %ebp
C: c3 ret
d: 8d 76 00 lea 0x0 (%esi) , %esi

m Disassembler
objdump -d p
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
= Can berun on either a.out (complete executable) or . o file

Alternate Disassembly
Disassembled

Object
0x401040 : 0x401040 <sum>: push %ebp
0x55 0x401041 <sum+1l>: mov %esp, $ebp
0x89 0x401043 <sum+3>: mov Oxc (%ebp) , seax
Oxe5 0x401046 <sum+t+6>: add 0x8 (%ebp) , seax
0x8b 0x401049 <sum+9>: mov %ebp, $esp
0x45 0x40104b <sum+ll>: pop %ebp
0x0c 0x40104c <sum+1l2>: ret
0x03 0x40104d <sum+13>: lea 0x0 (%esi) , 3esi
0x45
0x08
0x89 m Within gdb Debugger
Oxec
db
0x5d g_ P
0xc3 disassemble sum

= Disassemble procedure
x/13b sum

= Examine the 13 bytes starting at sum

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD .EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp, $ebp
30001003: 6a ff push SOxXffffffff

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

— -+ = e
“8 88,==
ALU
olobal vs local
variables
fOO(a,b,C) Control Flow
Functions

fthen:else
for, while, goto

Assembly Programmer’s View

CPU Memory
Addresses
PC Registers '| Object Code
. Data | Program Data
Condition Instructions SOLLIL
Codes)

Stack
m Programmer-Visible State

" PC: Program counter

» Address of next instruction
= Called “EIP” (IA32) or “RIP” (x86-64)

= Register file

" Memory

= Byte addressable array

» Heavily used program data

" Condition codes

. . = Code, user data, (some) OS data
» Store status information about most

recent arithmetic operation * Includes stack used to support

» Used for conditional branching procedures

