
CAS CS 210 - Computer Systems
Fall 2014

SOLUTIONS: Problem Set 1 (PS1) (’C’ Basics, Logic and Data Representaiton)
Out: September 09

Due: Part A September 18, 1:30 pm; Part B September 23, 1:30 pm

NO LATE SUBMISSIONS WILL BE ACCEPTED

To be completed individually. For all questions, show your work in obtaining the
final answers.

PART A: ’C’ Basics and Logic

READ: K&R: chapter 1, 5.1-5.6, 6.1-6.4

1) hello.c

1 #inc lude<s t d i o . h>
2
3 i n t
4 main ( i n t argc , char ∗∗ argv )
5 {
6 p r i n t f (” He l lo World\n ” ) ;
7 re turn 0 ;
8 }

Describe the meaning/side effect of each non-blank line.

1: #include <stdio.h>

This is a ’C’ preprocessor directive that causes the include file stdio.h,

that describes the standard input/output (io) library functions, to be inserted

here. BONUS: This ensure that the compiler can properly generate calls to

these functions as from within the current file -- this allows you to

invoke calls such as printf.

3: int

Part of the declaration of the main function that indicates that

it’s return type is an integer

4: main(int argc, char **argv)

continuation of the declaration of the main function. Specifices

that main is a function that takes two arguments, first an

integer referenced as argc and secondly an array of char

pointers. BONUS: argc number of arguments to the program and
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argv is an array of the space seperated strings that form the

command line

5: {

indicates that the following block of statements defines the body

of the function main

6: printf("Hello World\n");

causes the main function to invoke/call the printf routine of the

standard ’c’ library. This function will print the string "Hello

World" with a newline to the screen/standard out of the program.

BONUS: printf is being passed a single char * argument as the

format string.

7: return 0;

causes execution of main to terminate by returnig to the caller with

a return value of 0;

8: }

terminates the block of statements that defines the body of the

main function
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2) Memory and Pointers

1 #inc lude <s t d i o . h>
2
3 i n t myint ;
4 i n t ∗ ip ;
5 char mystring [ 6 ] = ” h e l l o ” ;
6 char ∗cp ;
7
8 i n t myfunc0 ( i n t x , i n t ∗ ip )
9 {

10 ∗ ip = ∗ ip + 2 ;
11 x++;
12 return x ;
13 }
14
15 i n t myfunc1 ( char ∗c )
16 {
17 i f (∗ c >= ’ a ’ && ∗c <= ’ z ’ ) {
18 ∗c +=’A’ − ’ a ’ ;
19 re turn 1 ;
20 }
21 return 0 ;
22 }
23
24 i n t main ( i n t argc , char ∗∗ argv )
25 {
26 myint = 0 ;
27 ip = &myint ;
28 cp = mystring ;
29
30 whi l e ( myfunc1 ( cp ) ) {
31 p r i n t f (”%d\n” , myfunc0 ( myint , ip ) ) ;
32 cp++;
33 }
34
35 p r i n t f (” mystr ing :%s myint:%d\n” , mystring , myint ) ;
36 re turn 0 ;
37 }
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Please provide the output below for the program listing.

1

3

5

7

9

mystring:HELLO myint:10

Please fill in the missing values for the following table assuming that we stop the program just
prior to it exiting at line 36. All address values should be written as 8 digit hex values and all
integer values as simple decimals.
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Name Address Value

mystring[0] 0x0804972c 72 ’H’

mystring[1] 0x0804972d 69 ’E’

mystring[2] 0x0804972e 76 ’L’

mystring[3] 0x0804972f 76 ’L’

mystring[4] 0x08049730 79 ’O’

mystring[5] 0x08049731 0

ip 0x0804973c 0x08049740

myint 0x08049740 10

cp 0x08049744 0x08049731

How answers can be validated using gdb:

NOTE: YOU MAY GET DIFFERENT ADDRESS IN WHICH CASE YOU WOULD NEED TO

TRANSLATE TO GET THE RIGHT ANSWERS

csa2$ gcc -m32 -g memory.c -o memmory

csa2$ gdb memory

GNU gdb (GDB) Red Hat Enterprise Linux (7.2-60.el6_4.1)

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "x86_64-redhat-linux-gnu".

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/fac1/jappavoo/tmp/cs210/memory...done.

(gdb) list

17 if (*c >= ’a’ && *c <= ’z’) {

18 *c +=’A’ - ’a’;

19 return 1;

20 }

21 return 0;

22 }

23

24 int main(int argc, char **argv)
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25 {

26 myint = 0;

(gdb) list

27 ip = &myint;

28 cp = mystring;

29

30 while (myfunc1(cp)) {

31 printf("%d\n", myfunc0(myint, ip));

32 cp++;

33 }

34

35 printf("mystring:%s myint:%d\n", mystring, myint);

36 return 0;

(gdb) b 36

Breakpoint 1 at 0x80484a0: file memory.c, line 36.

(gdb) run

Starting program: /home/fac1/jappavoo/tmp/cs210/memory

1

3

5

7

9

mystring:HELLO myint:10

Breakpoint 1, main (argc=1, argv=0xffffd424) at memory.c:36

36 return 0;

(gdb) p mystring[0]

$1 = 72 ’H’

(gdb) p &mystring[0]

$2 = 0x804972c "HELLO"

(gdb) p &mystring[1]

$3 = 0x804972d "ELLO"

(gdb) p mystring[1]

$4 = 69 ’E’

(gdb) p &mystring[2]

$5 = 0x804972e "LLO"

(gdb) p mystring[2]

$6 = 76 ’L’

(gdb) p &mystring[3]

$7 = 0x804972f "LO"

(gdb) p mystring[3]

$8 = 76 ’L’

(gdb) p mystring[4]

$9 = 79 ’O’

(gdb) p &mystring[4]
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$10 = 0x8049730 "O"

(gdb) p &mystring[5]

$11 = 0x8049731 ""

(gdb) p mystring[5]

$12 = 0 ’\000’

(gdb) p ip

$13 = (int *) 0x8049740

(gdb) p myint

$14 = 10

(gdb) p cp

$15 = 0x8049731 ""

(gdb)
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3) Pointers and Structs

1 s t r u c t myStruct {
2 s t r u c t myStruct ∗p0 ;
3 s t r u c t myStruct ∗p1 ;
4 s t r u c t myStruct ∗p2 ;
5 char ∗cp ;
6 i n t va l ;
7 } ;
8
9 s t r u c t myStruct ∗ r ;

10 s t r u c t myStruct ∗ s ;
11 s t r u c t myStruct ∗ t ;
12
13 s = mal loc ( s i z e o f ( s t r u c t myStruct ) ) ;
14 s−>p0 = mal loc ( s i z e o f ( s t r u c t myStruct ) ) ;
15 s−>p0−>p2 = mal loc ( s i z e o f ( s t r u c t myStruct ) ) ;
16 s−>p0−>p2−>p1 = mal loc ( s i z e o f ( s t r u c t myStruct ) ) ;
17 s−>p0−>p2−>p0 = s−>p0 ;
18 r=s−>p0−>p2−>p1 ;
19 s−>p1 = mal loc ( s i z e o f ( s t r u c t myStruct ) ) ;
20 r−>p0 = mal loc ( s i z e o f ( s t r u c t myStruct ) ) ;
21 r−>p0−>p2 = mal loc ( s i z e o f ( s t r u c t myStruct ) ) ;
22 r−>p0−>p2−>p2 = mal loc ( s i z e o f ( s t r u c t myStruct ) ) ;
23 t = mal loc ( s i z e ( s t r u c t myStruct ) ) ;
24 s−>p0−>p2−>p1−>p0−>p2−>va l = 21 ;
25 t−>va l = 42 ;
26 s−>p2 = t ;
27 s−>p0−>p2−>p0−>p2−>p1−>p0−>p2−>va l = 3 ;

A struct is a multi-byte programmer defined type that groups together several members (K&R ch
6). Sizeof can be used to determine the aggregate number of bytes that a particular struct type
requires. Malloc is a standard ’C’ library call that dynamically allocates the requested number of
bytes of memory (K&R 7.8.5). Malloc returns the address of the newly allocated memory. Storing
the address in a variable of the appropriate pointer type allows you to access the memory allocated
by malloc. In the case of a struct pointer you use the ’->’, called the member selection operator,
to access a particular field of the struct pointed too. For futher details on structs and malloc see
the appropriate sections in K&R.

Complete the diagram on the next page. Illustrate the side effect of the above code fragment.
Draw all additional boxe and complete and add arrows as needed. Note assume there are no failures
in calls to malloc. You may use ’?’ to indicate unknown values of fields. Be sure to indicate all
instances of the struct and all field values.

8



r:s:t:

p0: ?

p1: ?

p2:

cp: ?

val: ?

p0:

p1:

p2: ?

cp: ?

val: ?

p0:

p1: ?

p2: ?

cp: ?

val: ?

p0:

p1:

p2:

cp: ?

val: ?
p0: ?

p1: ?

p2:

cp: ?

val: ?

p0: ?

p1: ?

p2:

cp: ?

val:   3

p0: ?

p1: ?

p2: ?

cp: ?

val: ?

p0: ?

p1: ?

p2: ?

cp: ?

val: ?

p0: ?

p1: ?

p2: ?

cp: ?

val: 42
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4) Logic Gates and Truth Tables)

1. Prove both of DeMorgan’s Laws using Truth Tables. DeMorgan’s Laws are:

(a) Law 1: Stated in english and in ’C’

English: Not A and B is the same as Not A or Not B

’C’: !(A&&B) == (!A||!B)

A B !A !B A && B !(A&&B) (!A||!B)

0 0 1 1 0 1 1

0 1 1 0 0 1 1

1 0 0 1 0 1 1

1 1 0 0 1 0 0

(b) Law 2: Stated in english and in ’C’

English: Not A or B is the same as Not A and Not B

’C’: !(A||B) == (!A&&!B)

A B !A !B A||B !(A||B) (!A&&!B)

0 0 1 1 0 1 1

0 1 1 0 1 0 0

1 0 0 1 1 0 0

1 1 0 0 1 0 0
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2. Only using NOT, OR and AND gates draw the logic gate cicuit for the following boolean
expression. (w||!x)&&(y||(x&&z))

X

NOT X

W

Y

Z

OUTPUT
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PART B: Data Representation

1) Book problems

1. Solve problem 2.61, on page 121, from our CS:APP2e text.

CAS CS 210 - Computer Systems
Fall 2010
Problem Set 1 (PS1) (Logic, Data Representation & Arithmetic) 
Out: Monday, September 9 Due: Friday, September 24, 4:00 pm
NO LATE SUBMISSIONS ACCEPTED

SOLUTIONS

1.
Problem 2.57 Solution:
This exercise should be a straightforward variation on the existing code from page 42, figure 2.4 in the 
book.

1 void show_short(short x) { 
2! show_bytes((byte_pointer) &x, sizeof(short)); 
3} 
4

5 void show_long(long x) { 
6! show_bytes((byte_pointer) &x, sizeof(long)); 
7}
8 

9 void show_double(double x) {
10    show_bytes((byte_pointer) &x, sizeof(double));
11}

2.
Problem 2.59 Solution:
This is a simple exercise in masking and bit manipulation. It is important to mention that  ̃0xFF is a way 
to generate a mask that selects all but the least significant byte that works for any word size.
(x & 0xFF) | (y &  ̃0xFF)

3.
Problem 2.61 Solution:
These exercises require thinking about the logical operation ! in a nontraditional way. Normally we think 
of it as logical negation. More generally, it detects whether there is any nonzero bit in a word. In addition, 
it gives practice with masking.

A.!!x 
B.!! ̃x 
C.!!(x & 0xFF) 
D.!!( ̃x & (0xFF << ((sizeof(int)-1)<<3)))

2. Solve problem 2.68, on page 123, from our CS:APP2e text.

8 CHAPTER 1. SOLUTIONS TO HOMEWORK PROBLEMS

2 * Mask with least signficant n bits set to 1
3 * Examples: n = 6 --> 0x2F, n = 17 --> 0x1FFFF
4 * Assume 1 <= n <= w
5 */
6 int lower_one_mask(int n) {
7 /*
8 * 2ˆn-1 has bit pattern 0...01..1 (n 1’s)
9 * But, we must avoid a shift by 32

10 */
11 return (2<<(n-1)) - 1;
12 }

code/data/bits.c

The code makes use of the trick that (1<<n)-1 creates a mask of n ones. The only challenge is to avoid
shifting by w when n = w. Instead of writing 1<<n, we write 2<<(n-1). This code will not work for
n = 0, but that’s not a very useful case, anyhow.

Problem 2.69 Solution:
code/data/bits.c

1 /*
2 * Do rotating left shift. Assume 0 <= n < w
3 * Examples when x = 0x12345678:
4 * n=4 -> 0x23456781, n=20 -> 0x67812345
5 */
6 unsigned rotate_left(unsigned x, int n) {
7 /* Mask all 1’s when n = 0 and all 0’s otherwise */
8 int z_mask = -!n;
9 /* Left w-n bits */

10 unsigned left = x << n;
11 /* Right n bits */
12 unsigned right = x >> ((sizeof(unsigned)<<3)-n);
13 return (z_mask&x) | (˜z_mask &(left|right));
14 }

code/data/bits.c

For the most part, this problem requires simple shifting and masking. We must treat the case of n = 0 as
special, because we would otherwise attempt to shift by w. Instead, we generate this solution explicitly, and
use masks of all ones and all zeros to select between the special and general case.

Problem 2.70 Solution:
The code is as follows:

code/data/bits.c

1 /*
2 * Return 1 when x can be represented as an n-bit, 2’s complement number;

1.2. CHAPTER 2: REPRESENTING ANDMANIPULATING INFORMATION 7

code/data/bits.c

Problem 2.66 Solution:
The key idea is given in the hint. We can create a cascade of 1’s to the right—first one, then two, then four,
up to half the word size, using just 10 operations.

code/data/bits.c

1 /*
2 * Generate mask indicating leftmost 1 in x.
3 * For example 0xFF00 -> 0x8000, and 0x6600 --> 0x4000
4 * If x = 0, then return 0.
5 */
6 int leftmost_one(unsigned x) {
7 /* First, convert to pattern of the form 0...011...1 */
8 x |= (x>>1);
9 x |= (x>>2);

10 x |= (x>>4);
11 x |= (x>>8);
12 x |= (x>>16);
13 /* Now knock out all but leading 1 bit */
14 x ˆ= (x>>1);
15 return x;
16 }

code/data/bits.c

Problem 2.67 Solution:
This problem illustrates some of the challenges of writing portable code. The fact that 1<<32 yields 0 on
some 32-bit machines and 1 on others is common source of bugs.

A. The C standard does not define the effect of a shift by 32 of a 32-bit datum. On the SPARC (and
many other machines), the expression x << k shifts by k mod 32, i.e., it ignores all but the least
significant 5 bits of the shift amount. Thus, the expression 1 << 32 yields 1.

B. Compute beyond_msb as 2 << 31.

C. We cannot shift by more than 15 bits at a time, but we can compose multiple shifts to get the
desired effect. Thus, we can compute set_msb as 2 << 15 << 15, and beyond_msb as
set_msb << 1.

Problem 2.68 Solution:
Here is the code:

code/data/bits.c

1 /*

3. Solve problem 2.71, on page 124, from our CS:APP2e text.
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1.2. CHAPTER 2: REPRESENTING ANDMANIPULATING INFORMATION 9

3 * 0 otherwise
4 * Assume 1 <= n <= w
5 */
6 int fits_bits(int x, int n) {
7 /*
8 * Use left shift then right shift
9 * to sign extend from n bits to full int

10 */
11 int count = (sizeof(int)<<3)-n;
12 int leftright = (x << count) >> count;
13 /* See if still have same value */
14 return x == leftright;
15 }

code/data/bits.c

This code uses a common trick, demonstrated in Problem 2.23, of first shifting left by some amount k and
then arithmetically shifting right by k. This has the effect of sign-extending from bit w − k − 1 leftward.

Problem 2.71 Solution:
This problem highlights the difference between zero extension and sign extension.

A. The function does not perform any sign extension. For example, if we attempt to extract byte 0 from
word 0xFF, we will get 255, rather than −1.

B. The following code uses the trick shown in Problem 2.23 to isolate a particular range of bits and to
perform sign extension at the same time. First, we perform a left shift so that the most significant bit
of the desired byte is at bit position 31. Then we right shift by 24, moving the byte into the proper
position and performing sign extension at the same time.

code/data/xbyte.c

1 int xbyte(packed_t word, int bytenum) {
2 int left = word << ((3-bytenum) << 3);
3 return left >> 24;
4 }

code/data/xbyte.c

Problem 2.72 Solution:
This code illustrates the hidden dangers of data type size t, which is defined to be unsigned on most
machines.

A. Since this one data value has type unsigned, the entire expression is evaluated according to the
rules of unsigned arithmetic. As a result, the conditional expression will always succeed, since every
value is greater or equal to 0.

B. The code can be corrected by rewriting the conditional test:

4. Solve problem 2.76, on page 126, from our CS:APP2e text.

1.2. CHAPTER 2: REPRESENTING ANDMANIPULATING INFORMATION 11

This problem requires a fairly deep understanding of two’s complement arithmetic. Some machines only
provide one form of multiplication, and hence the trick shown in the code here is actually required to
implement the alternate form.
As seen in Equation 2.18 we have x′ · y′ = x · y + (xw−1y + yw−1x)2w + xw−1yw−12

2w . The final term
has no effect on the 2w-bit representation of x′ · y′, but the middle term represents a correction factor that
must be added to the high order w bits. This is implemented as follows:

code/data/uhp-ans.c

1 unsigned unsigned_high_prod(unsigned x, unsigned y) {
2 unsigned p = (unsigned) signed_high_prod((int) x, (int) y);
3

4 if ((int) x < 0) /* x_{w-1} = 1 */
5 p += y;
6 if ((int) y < 0) /* y_{w-1} = 1 */
7 p += x;
8 return p;
9 }

code/data/uhp-ans.c

Problem 2.76 Solution:
Patterns of the kind shown here frequently appear in compiled code.
A. K = 17: (x<<4) + x
B. K = −7: -(x<<3) + x
C. K = 60: (x<<6) - (x<<2)
D. K = −112: -(x<<7) + (x<<4)

Problem 2.77 Solution:
The code follows the method described in 2.3.7 for dividing by a power of two using arithmetic right shift.
The only challenge is to do correct biasing within the constraints of the coding rules.

code/data/bits.c

1 /* Divide by power of two. Assume 0 <= k < w-1 */
2 int divide_power2(int x, int k) {
3 /* All 1’s if x < 0 */
4 int mask = x>>((sizeof(int)<<3)-1);
5 int bias = mask & ((1<<k)-1);
6 return (x+bias)>>k;
7 }

code/data/bits.c

Problem 2.78 Solution:
This demonstrates the use of shifting for both multiplication and division. The only challenge is to compute
the bias using the limited operations allowed by the coding rules.
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2) 2’s Complement Respresentation

Fill in the below table assuming a 32 bit computer that uses 2’s complement representation, INT MAX

and INT MIN are defined as the computer’s signed integer representation maximum and minimum
value respectively, and:

int x = -1, y = 0xfeedface, z = INT_MAX, i = sizeof(short *);

C Expression Hexadecimal

x 0xffffffff

y 0xfeedface

z 0x7ffffff

i 0x00000004

z<<3 0xfffffff8

z<<((i>>1)-1) 0xfffffffe

˜0 == (z + INT MIN) 0x00000001

y & 0xffff 0x0000face

y >> 16 0xfffffeed

(y >> 16) | 0xffff 0xffffffff

(˜(0x10>>2)+1) == (x*i) 0x00000001

(˜z+1) + -1 0x80000000

(˜((˜x) << 1)) & y 0xfeedface

((y<<3)+INT MIN)ˆ((y<<3)+INT MIN) 0x00000000
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The following code can be used to verify the answers:

#include <stdio.h>

#include <limits.h>

int

main(int argc, char **argv)

{

int x = -1, y = 0xfeedface, z = INT_MAX, i = sizeof(int);

printf("0x%08x\n", x);

printf("0x%08x\n", y);

printf("0x%08x\n", z);

printf("0x%08x\n", i);

printf("0x%08x\n", z<<3);

printf("0x%08x\n", z<<((i>>1)-1 ));

printf("0x%08x\n", ~0 == (z + INT_MIN));

printf("0x%08x\n", y & 0xffff);

printf("0x%08x\n", y >> 16);

printf("0x%08x\n", (y>>16) | 0xffff);

printf("0x%08x\n", (~(0x10>>2)+1) == (x*i));

printf("0x%08x\n", (~z+1) + -1);

printf("0x%08x\n", (~((~x)<<1)) & y);

printf("0x%08x\n", ((y<<3)+INT_MIN) ^ ((y<<3)+INT_MIN));

return 0;

}
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3) Misc

1. (010101)2 to base 10

21

2. (011100)2 to base 16

0x1C

3. (54.125)10 to binary

110110.001

4. (122.3)8 to base 16

0x52.4

5. Find the decimal equivalent of the five-bit twos complement number: 11111

-1

6. Show the results of adding the following pairs of six-bit twos complement numbers in decimal
and indicate whether or not overflow occurs for each case.

(a) 111110 + 111101

(-2 + -3) : bitwise sum 1111011 truncates to 111011 = -5 NO OVERFLOW

(b) 110111 + 110111

(-9 + -9) : bitwise sum 1101110 truncates to 101110 = -18 NO OVERFLOW

(c) 111111 + 001011

(-1 + 11) : bitwise sum 1001010 truncates to 001010 = 10 NO OVERFLOW

7. Complete the following table for the 5-bit 2’s complement representation. Show your answers
as signed base 10 decimal integers and the 2’s complement binary value.

value decimal binary

Largest Positive Number 15 1111

Most Negative Number -16 10000

Number of distinct Numbers 32
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