ASSEMBLY BASICS
REGISTERS, OPERANDS, MOVE

Integer Registers (1A32) Origin
(mostly obsolete)
|%eax sax[tah | sal | accunulate
© |%ecx sex[_%ch | sl | counter
2
o
£ |%edx sdx [%dh | ®dl | date
2
§ | [vebx sox[sbh | sbl | bese
g
[sesi wsi | | e
[eai adi | [
stack
[sesp sop | reinter
base
| %ebp bp ‘ | pointer
16-bit virtual registers
(backwards compatibility)
Moving Data: IA32 %eax
%ecx
= Moving Data Sedx
. , D
m?vx Source, Dest Sebx
" xin{b, w, 1}
%esi
= movl Source, Dest: $edi
Move 4-byte “long word” Sesp
® movw Source, Dest: %ebp

Move 2-byte “word”
movb Source, Dest:
Move 1-byte “byte”

m Lots of these in typical code

Moving Data: I1A32

= Moving Data
mov1l Source, Dest:

m Operand Types
® Immediate: Constant integer data
= Example: $0x400, $-533

= Like C constant, but prefixed with *$’

= Encoded with 1, 2, or 4 bytes

= Register: One of 8 integer registers

= Example: $eax, %edx

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

= But $esp and %ebp reserved for special use

= Others have special uses for particular instructions

= Memory: 4 consecutive bytes of memory at address given by register

= Simplest example: (%eax)

= Various other “address modes”

mov1l Operand Combi
Source Dest
Reg movl
Imm
Mem movl
movl Reg Reg movi
Mem movl

Mem Reg movl

nations

Src,Dest

$0x4, $eax
$-147, (%eax)

%eax, $edx
%eax, (%edx)

(%eax) ,%edx

C Analog
temp = 0x4;
*p = -147;

temp2 = templ;

*p = temp;

temp = *p;

Cannot do memory-memory transfer with a single instruction

Simple Memory Addressing Modes

= Normal (R)
= Register R specifies memory

movl (%ecx),%eax

m Displacement D(R)

Mem[Reg[R]]
address

Mem[Reg[R]+D]

= Register R specifies start of memory region
= Constant displacement D specifies offset

movl 8 (%ebp) ,%edx

Using Simple Addressing Modes

swap:
pushl %ebp
movl %esp,%ebp Set
void swap (int *xp, int *yp) pushl %ebx Up
{
int t0 = *xp; movl 12 (%ebp) ,%ecx
int t1 = *yp; movl 8(%ebp) ,%edx
*xp = tl; movl (%ecx),%eax
= s Bod
*YP = t0; movl (%edx),%ebx Y
} movl %eax, (%edx)
movl %ebx, (%ecx)
movl -4 (%ebp) ,%ebx
movl %ebp, $esp .
popl %ebp Finish
ret
Using Simple Addressing Modes
swap:
pushl %ebp
movl $esp,%ebp Set
void swap(int *xp, int *yp) pushl %ebx Up
{
int t0 = *xp; movl 12 (%ebp) ,%ecx
int t1 = *yp; movl 8 (%ebp) ,%edx
*xp = t1; movl (%ecx),%eax
= to: Bod
*YP = t0; movl (%edx),S%ebx v
} movl %eax, (%edx)
movl %ebx, (%ecx)
movl -4 (%ebp),%ebx
movl %ebp, %esp -
popl %ebp Finish
ret
Understanding Swap
void swap(int *xp, int *yp) * stack
p .
int t0 = *xp; Offset * (in memory)
int t1 = *yp;
*xp = t1; 12 vp
*yp = t0; 8 xp
}
4 | Rtnadr
0 |old %ebpl— %ebp
_ -4 [old %ebx|
Register Value
tecx YP movl 12 (%ebp) ,%ecx # ecx = yp
%edx xp movl 8(%ebp),%edx # edx = xp

teax t1 movl (%ecx),%eax eax = *yp (tl)

#
%ebx t0 movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, ($ecx) # *yp = ebx

Address

Understanding Swap 123 | ox124
456 0x120
oxllc
teax 0x118
Sedx Offset ox114
secx| yp 12 | 0x120 | ox110
oon xp 8 [0x124 | ox10c
4 | Rtnadr 0x108
tesi o
tebp — 0x104
tedi _a
0x100
%esp
movl 12 (%ebp) , ecx # ecx = yp
%ebp| 0x104 movl 8(%ebp) ,%edx # edx = xp
movl (%ecx),%eax # eax = *yp (t1)
movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx
. Address
Understanding Swap 123 | oxiz4
456 0x120
oxlle
Beax 0x118
%edx| Offset 0x114
secx| 0x120 ¥P 12 | 0x120 | gx110
Py xp 8 [0x124 | gy10c
4 | Rtnadr 0x108
sesi o
%ebp — 0x104
Sedi _a
0x100
%esp|
movl 12 (%ebp) ,%ecx #
%ebp| 0x104 movl 8(%ebp),%edx # xp
movl (%ecx),%eax # *yp (t1)
movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx
. Address
Understanding Swap 123 | ox124
456 0x120
oxlle
Yeax| 0x118
$edx| 0x124 Offset ox114
%ecx| 0x120 ¥P 12 [0x120 | ox110
Py xp 8 | 0x124 | gy10c
4 | Rtnadr 0x108
sesi o
%ebp — 0x104
Sedi _4
0x100
%esp|
movl 12 (%ebp) ,%ecx # ecx
%ebp| 0x104 movl 8 (%ebp),%edx # edx
movl (%ecx),%eax # eax = *yp (tl)
movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, ($edx) # *xp = eax
movl %ebx, (¥ecx) # *yp = ebx

Address

Understanding Swap 123 | oxi2a
456 0x120
oxlle
teax| 456 0x118
%edx| O0x124 Offset 0x114
secx| 0x120 ¥P 12 |0x120 | ox110
ebx *P 8 |0x124 | ox10c
4 |Rtnadr | 04108
$esi 0
tebp — 0x104
sedi _a
0x100
%esp|
movl 12 (%ebp) ,%ecx #
%ebp| 0x104 movl 8 (%ebp) ,%edx #
movl (%ecx),%eax # *yp (tl1)
movl (%edx),%ebx # *xp (t0)
movl %eax, (%edx) #
movl %ebx, (%ecx) #
. Address
Understanding Swap 123 | ox124
456 0x120
oxllc
%eax 456 0x118
tedx| 0x124 Offset ox114
secx| 0x120 ¥P 12 [0x120 | ox110
%ebx| 123 P 8 |0x124 | ox10¢
4 | Rtnadr 0x108
tesi R
tebp — 0x104
$edi "
0x100
%$esp|
movl 12 (%ebp) ,%ecx # ecx = yp
%ebp| 0x104 movl 8(%ebp) ,$edx # edx = xp
movl (%ecx),%eax # eax = *yp (t1)
movl (%edx),%ebx # ebx = *xp (t0)
movl %eax, (%edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx
. Address
Understanding Swap 456 | ox12a
456 0x120
Oxllc
seax 456 oxi1s
sedx| 0x124 Offset ox114
secx| 0x120 ¥P 12 [0x120 | ox110
sebx| 123 P 8 [0x124 | ox10c
4 |Rtnadr 0x108
%esi 0
tebp — 0x104
Sedi "
0x100
%esp|
movl 12 (%ebp) ,%ecx # ecx = yp
%ebp| 0x104 movl 8(%ebp),%edx # edx = xp
movl (%ecx),%eax # eax = *yp (tl)
movl (%edx) ,%ebx # ebx = *xp (t0)
movl %eax, ($edx) # *xp = eax
movl %ebx, (tecx) # *yp = ebx

Address

Understanding Swap 456 | oxi24
123 0x120
Oxllc
seax 456 ox118
$edx| 0x124 Offset ox114
secx| 0x120 ¥P 12 [0x120 | ox110
sebx| 123 P 8 [0x124 | ox10c
4 |Rtnadr 0x108
%esi R
%ebp — 0x104
%edi "
0x100
esp
movl 12 (%ebp) , %ecx # ecx = yp
%ebp| 0x104 movl 8(%ebp) ,%edx # edx = xp
movl (%ecx),%eax # eax = *yp (tl1)
movl (%edx) ,%ebx # ebx = *xp (t0)
movl %eax, ($edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx

Complete Memory Addressing Modes

= Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
=D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 8 integer registers

= Ri: Index register: Any, except for $esp
= Unlikely you’d use %ebp, either
=S Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Regl[Ril]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Regl[Ri]]

ADDITIONAL INFO

Intel x86 Processors

u Totally dominate computer market \/\Ve|| the desktop

m Evolutionary design
= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
®= Many different instructions with many different formats
= But, only small subset encountered with Linux programs
® Hard to match performance of Reduced Instruction Set Computers
(RISC)
= But, Intel has done just that!

Intel x86 Evolution: Milestones

Name Date Transistors MHz

= 8086 1978 29K 5-10

® First 16-bit processor. Basis for IBM PC & DOS

® 1MB address space
= 386 1985 275K 16-33

= First 32 bit processor , referred to as I1A32

= Added “flat addressing”

= Capable of running Unix

= 32-bit Linux/gce uses no instructions introduced in later models
= Pentium 4F 2005 230M 2800-3800

® First 64-bit processor

= Meanwhile, Pentium 4s (Netburst arch.) phased out in favor of
“Core” line

Intel x86 Processors: Overview

X86-16 8086
286
X86-32/1A32 386
486
Pentium
MmX Pentium MMX
SSE Pentium Il
SSE2 Pentium 4
SSE3 Pentium 4E
X86-64 / EM64t Pentium 4F
Core 2 Duo
SSE4 Corei7

IA: often redefined as latest Intel architecture

Intel x86 Processors, contd.

m Machine Evolution

" 486 1989 1.9M
® Pentium 1993 3.1M
= Pentium/MMX 1997 4.5M
® PentiumPro 1995 6.5M
= Pentium Il 1999 8.2M
® Pentium 4 2001 4a2m

= Core 2 Duo 2006 291M

u Added Features
= Instructions to support multimedia operations
« Parallel operations on 1, 2, and 4-byte data, both integer & FP
= Instructions to enable more efficient conditional operations
m Linux/GCC Evolution
= Very limited

More Information

m Intel processors (Wikipedia)
m Intel microarchitectures

New Species: ia64, then IPF, then Itanium,...

Name Date Transistors
= Itanium 2001 10mM
= First shot at 64-bit architecture: first called 1A64
= Radically new instruction set designed for high performance
= Can run existing IA32 programs
= On-board “x86 engine”
= Joint project with Hewlett-Packard

u Itanium 2 2002 221M
= Big performance boost
u Itanium 2 Dual-Core 2006 1.78

m Itanium has not taken off in marketplace
= Lack of backward compatibility, no good compiler support, Pentium
4 got too good

Definitions

Architecture: (also instruction set architecture: ISA) The
parts of a processor design that one needs to understand
to write assembly code.

Microarchitecture: Implementation of the architecture.

Architecture examples: instruction set specification,
registers.

Microarchitecture examples: cache sizes and core
frequency.

Example ISAs (Intel): x86, IA, IPF

x86 Clones: Advanced Micro Devices (AMD)

m Historically

= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

u Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits

m Recently

= Intel much quicker with dual core design
= Intel currently far ahead in performance
= em64t backwards compatible to x86-64

Intel’s 64-Bit

m Intel Attempted Radical Shift from 1A32 to IA64
= Totally different architecture (Itanium)
= Executes IA32 code only as legacy
= Performance disappointing
AMD Stepped in with Evolutionary Solution
= x86-64 (now called “AMD64”)
Intel Felt Obligated to Focus on I1A64
® Hard to admit mistake or that AMD is better
2004: Intel Announces EM64T extension to 1A32
= Extended Memory 64-bit Technology
= Almost identical to x86-64!

Meanwhile: EM64t well introduced,
however, still often not used by OS, programs

