ASSEMBLY BASICS REGISTERS, OPERANDS, MOVE

Moving Data: IA32 %eax **%есх** Moving Data %edx movx Source, Dest %ebx x in {b, w, 1} %esi %edi mov1 Source, Dest: Move 4-byte "long word" %esp movw Source, Dest: %ebp Move 2-byte "word" movb Source, Dest: Move 1-byte "byte" Lots of these in typical code

mov1 Operand Combinations

Cannot do memory-memory transfer with a single instruction

Simple Memory Addressing Modes

- Normal (R) Mem[Reg[R]]
 - Register R specifies memory address

movl (%ecx),%eax

- Displacement D(R) Mem[Reg[R]+D]
- Register R specifies start of memory region
- Constant displacement D specifies offset

movl 8(%ebp),%edx

Complete Memory Addressing Modes

■ Most General Form

D(Rb,Ri,S)

Mem[Reg[Rb]+S*Reg[Ri]+D]

- D: Constant "displacement" 1, 2, or 4 bytes
- Rb: Base register: Any of 8 integer registers Ri: Index register: Any, except for %esp
- Unlikely you'd use %ebp, either
- Scale: 1, 2, 4, or 8 (why these numbers?)

■ Special Cases

Mem[Reg[Rb]+Reg[Ri]] (Rb,Ri) D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D] Mem[Reg[Rb]+S*Reg[Ri]] (Rb,Ri,S)

ADDITIONAL INFO

Intel x86 Processors

- Totally dominate computer market Well the desktop
- Evolutionary design
- Backwards compatible up until 8086, introduced in 1978
- Added more features as time goes on
- Complex instruction set computer (CISC)
- Many different instructions with many different formats
 - But, only small subset encountered with Linux programs
- Hard to match performance of Reduced Instruction Set Computers (RISC)
- But, Intel has done just that!

Intel x86 Evolution: Milestones

Name	Date	Transistors	MHz
8086	1978	29K	5-10
First 16-bit p	processor. Bas	sis for IBM PC & DOS	
 1MB address 	s space		
386	1985	275K	16-33
First 32 bit p	rocessor , refe	erred to as IA32	
Added "flat	addressing"		
Capable of r	unning Unix		
 32-bit Linux 	gcc uses no ir	structions introduced	in later models
Pentium 4F	2005	230M	2800-3800
First 64-bit p	processor		
 Meanwhile, "Core" line 	Pentium 4s (N	letburst arch.) phased	out in favor of

Intel x86 Processors, contd.

■ Machine Evolution

486	1989	1.9
Pentium	1993	3.1
Pentium/MMX	1997	4.5
PentiumPro	1995	6.5
 Pentium III 	1999	8.21
Pentium 4	2001	42N
 Core 2 Duo 	2006	291

■ Added Features

- Instructions to support multimedia operations
- Parallel operations on 1, 2, and 4-byte data, both integer & FP
- Instructions to enable more efficient conditional operations
- Linux/GCC Evolution
- Very limited

More Information

- Intel processors (Wikipedia)
- Intel microarchitectures

New Species: ia64, then IPF, then Itanium,...

Name Date Transistors
■ Itanium 2001 10M

- First shot at 64-bit architecture: first called IA64
- Radically new instruction set designed for high performance
- Can run existing IA32 programs
- On-board "x86 engine"
- Joint project with Hewlett-Packard

■ Itanium 2 2002 221M

Big performance boost

■ Itanium 2 Dual-Core 2006 1.7B

- Itanium has not taken off in marketplace
- Lack of backward compatibility, no good compiler support, Pentium 4 got too good

Definitions

- Architecture: (also instruction set architecture: ISA) The parts of a processor design that one needs to understand to write assembly code.
- Microarchitecture: Implementation of the architecture.
- Architecture examples: instruction set specification, registers.
- Microarchitecture examples: cache sizes and core frequency.
- Example ISAs (Intel): x86, IA, IPF

x86 Clones: Advanced Micro Devices (AMD)

Historically

- AMD has followed just behind Intel
- A little bit slower, a lot cheaper

■ Then

- Recruited top circuit designers from Digital Equipment Corp. and other downward trending companies
- Built Opteron: tough competitor to Pentium 4
- Developed x86-64, their own extension to 64 bits

Recently

- Intel much quicker with dual core design
- Intel currently far ahead in performance
- em64t backwards compatible to x86-64

Intel's 64-Bit

- Intel Attempted Radical Shift from IA32 to IA64
 - Totally different architecture (Itanium)
 - Executes IA32 code only as legacy
 - Performance disappointing
- AMD Stepped in with Evolutionary Solution
- x86-64 (now called "AMD64")
- Intel Felt Obligated to Focus on IA64
 - · Hard to admit mistake or that AMD is better
- 2004: Intel Announces EM64T extension to IA32
 - Extended Memory 64-bit Technology
 - Almost identical to x86-64!
- Meanwhile: EM64t well introduced, however, still often not used by OS, programs