
CAS CS 210 - Computer Systems
Fall 2014

PROBLEM SET 3 (PS3) (CACHING AND VIRTUAL MEMORY)
OUT: NOV 13

DUE: NOV 25, 1:30 PM

NO LATE SUBMISSIONS WILL BE ACCEPTED

Page 1 of 7



Problem 1

The following problem concerns basic cache lookups.

• The memory is byte addressable.

• Memory accesses are to 1-byte words (not 4-byte words).

• Physical addresses are 13 bits wide.

• The cache is 2-way set associative, with a 4 byte line size and 16 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the cache are as follows:

2-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 09 1 86 30 3F 10 00 0 99 04 03 48
1 45 1 60 4F E0 23 38 1 00 BC 0B 37
2 EB 0 2F 81 FD 09 0B 0 8F E2 05 BD
3 06 0 3D 94 9B F7 32 1 12 08 7B AD
4 C7 1 06 78 07 C5 05 1 40 67 C2 3B
5 71 1 0B DE 18 4B 6E 0 B0 39 D3 F7
6 91 1 A0 B7 26 2D F0 0 0C 71 40 10
7 46 0 B1 0A 32 0F DE 1 12 C0 88 37

Part 1

The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that would be
used to determine the following:

CO The block offset within the cache line
CI The cache index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

Page 2 of 7



Part 2

For the given physical address, indicate the cache entry accessed and the cache byte value returned in hex. Indicate
whether a cache miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”.

Physical address: 0E34

A. Physical address format (one bit per box)
12 11 10 9 8 7 6 5 4 3 2 1 0

B. Physical memory reference

Parameter Value
Byte offset 0x
Cache Index 0x
Cache Tag 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

Page 3 of 7



Problem 3

After watching the presidential election you decide to start a business in developing software for electronic voting.
The software will run on a machine with a 1024-byte direct-mapped data cache with 64 byte blocks.

You are implementing a prototype of your software that assumes that there are 7 candidates. The C-structures you
are using are:

struct vote {
int candidates[7];
int valid;

};

struct vote vote_array[16][16];
register int i, j, k;

You have to decide between two alternative implementations of the routine that initializes the array vote_array.
You want to choose the one with the better cache performance.

Page 4 of 7



You can assume:

• sizeof(int) = 4

• vote_array begins at memory address 0

• The cache is initially empty.

• The only memory accesses are to the entries of the array vote_array. Variables i, j and k are stored in
registers.

A. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

vote_array[i][j].valid=0;
}

}

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

for (k=0; k<7; k++) {
vote_array[i][j].candidates[k] = 0;

}
}

}

Total number of misses in the first loop: _______

Total number of misses in the second loop: _______

Overall miss rate for writes to vote_array: _______

Page 5 of 7



B. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

for (k=0; k<7; k++) {
vote_array[i][j].candidates[k] = 0;

}
vote_array[i][j].valid=0;

}
}

Miss rate for writes to vote_array: _______

Page 6 of 7



Problem 4

Problem 6.31, on page 634, from our CS:APP2e

Problem 5

Problem 6.37 on page 636, from our CS:APP2e

1 Problem 6

Problem 9.11, on page 849, from our CS:APP2e

2 Problem 7

Problem 9.12, on page 850, from our CS:APP2e

3 Problem 8

Problem 9.13, on page 851, from our CS:APP2e

Additional Practice Problems : NOT GRADED

1. Problem 6.32, on page 634, from our CS:APP2e

2. Problem 6.33 on page 635, from our CS:APP2e

3. Problem 6.39 on page 637, from our CS:APP2e

4. Problem 9.15, on page 851, from CS:APP2e

5. Problem 9.16, on page 852, from CS:APP2e

Page 7 of 7


