
CAS CS 210 - Computer Systems
Fall 2014

PROBLEM SET 3 (PS3) SOLUTIONS

Page 1 of 16

Problem 1

The following problem concerns basic cache lookups.

• The memory is byte addressable.

• Memory accesses are to 1-byte words (not 4-byte words).

• Physical addresses are 13 bits wide.

• The cache is 2-way set associative, with a 4 byte line size and 16 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the cache are as follows:

2-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 09 1 86 30 3F 10 00 0 99 04 03 48
1 45 1 60 4F E0 23 38 1 00 BC 0B 37
2 EB 0 2F 81 FD 09 0B 0 8F E2 05 BD
3 06 0 3D 94 9B F7 32 1 12 08 7B AD
4 C7 1 06 78 07 C5 05 1 40 67 C2 3B
5 71 1 0B DE 18 4B 6E 0 B0 39 D3 F7
6 91 1 A0 B7 26 2D F0 0 0C 71 40 10
7 46 0 B1 0A 32 0F DE 1 12 C0 88 37

Part 1

The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that would be
used to determine the following:

CO The block offset within the cache line
CI The cache index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

Answer:

CT: [12-5] CI: [4-2] CO: [1-0]

12 11 10 9 8 7 6 5 4 3 2 1 0

CT CT CT CT CT CT CT CT CI CI CI CO CO

Page 2 of 16

Part 2

For the given physical address, indicate the cache entry accessed and the cache byte value returned in hex. Indicate
whether a cache miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”.

Physical address: 0E34

A. Physical address format (one bit per box)
12 11 10 9 8 7 6 5 4 3 2 1 0

B. Physical memory reference

Parameter Value
Byte offset 0x
Cache Index 0x
Cache Tag 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

Answer:

A. Physical address format (one bit per box)
12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 1 1 0 1 0 0

B. Physical memory reference

Parameter Value
Byte offset 0x0
Cache Index 0x5
Cache Tag 0x71
Cache Hit? (Y/N) Y
Cache Byte returned 0x0B

Page 3 of 16

Problem 3

After watching the presidential election you decide to start a business in developing software for electronic voting.
The software will run on a machine with a 1024-byte direct-mapped data cache with 64 byte blocks.

You are implementing a prototype of your software that assumes that there are 7 candidates. The C-structures you
are using are:

struct vote {
int candidates[7];
int valid;

};

struct vote vote_array[16][16];
register int i, j, k;

You have to decide between two alternative implementations of the routine that initializes the array vote_array.
You want to choose the one with the better cache performance.

Page 4 of 16

You can assume:

• sizeof(int) = 4

• vote_array begins at memory address 0

• The cache is initially empty.

• The only memory accesses are to the entries of the array vote_array. Variables i, j and k are stored in
registers.

A. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

vote_array[i][j].valid=0;
}

}

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

for (k=0; k<7; k++) {
vote_array[i][j].candidates[k] = 0;

}
}

}

Answer:
Total number of misses in the first loop: 128 Misses / 256 Total Writes

Total number of misses in the second loop: 128 Misses / 1792 Total Writes

Overall miss rate for writes to vote_array: 256 / 2048 = 1/8 = 12.5

Page 5 of 16

B. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

for (k=0; k<7; k++) {
vote_array[i][j].candidates[k] = 0;

}
vote_array[i][j].valid=0;

}
}

Answer: Miss rate for writes to vote_array: 1/16=6.26

Page 6 of 16

Problem 4

Problem 6.31, on page 634, from our CS:APP2e

90 CHAPTER 1. SOLUTIONS TO HOMEWORK PROBLEMS

B. Set 6 contains one valid line with a tag of 0x91. Since there is only one valid line in the set, four
addresses will hit. These addresses have the binary form 1 0010 0011 10xx. Thus, the four hex
addresses that hit in Set 6 are: 0x1238, 0x1239, 0x123a, and 0x123b.

Problem 6.29 Solution:
Another inverse cache indexing problem, using the same cache as the previous problem.

A. Set 2 contains no valid lines, so no addresses will hit.

B. Set 4 contains two valid lines: Line 0 and Line 1. Line 0 has a tag of 0xC7. There are four bytes in
each block, and thus four addresses will hit in Line 0. These addresses have the binary form 1 1000
1111 00xx. Thus, the following four hex addresses will hit in Line 0 of Set 4: 0x18f0, 0x18f1,
0x18f2, and 0x18f3.
Similarly, the following four addresses will hit in Line 1 of Set 4: 0x00b0, 0x00b1, 0x00b2,
0x00b3.

C. Set 5 contains one valid line, Line 0, with a tag of 0x71. Addresses that hit in this line have the
binary form 0 1110 0011 01xx. Thus, the following four hex addresses will hit in Line 0 of Set
5: 0x0e34, 0x0e35, 0x0e36, 0x0e37.

D. Set 7 contains one valid line, Line 1, with a tag of 0xde. Addresses that hit in this line have the
binary form 1 1011 1101 11xx. Thus, the following four hex addresses will hit in Line 1 of Set
7: 0x1bdc, 0x1bdd, 0x1bde, 0x1bdf.

Problem 6.30 Solution:
This problem is a straightforward test of the student’s ability to work through some simple cache translation
and lookup operations.

A. CT: [11–4], CI: [3–2], CO: [1–0]

B.

Operation Address Hit? Read Value (or Unknown)
Read 0x834 No Unknown
Write 0x836 Yes (not applicable)
Read 0xFFD Yes C0

Problem 6.31 Solution:
This is the first in a series of four related problems on basic cache operations. This first problem sets the
stage and serves as a warmup. The next three problems use the cache defined in this first problem.

A. Cache size: C = 128 bytes.

B. Address fields: CT: [12-5] CI: [4-2] CO: [1-0]

Page 7 of 16

Problem 5

Problem 6.37 on page 636, from our CS:APP2e

92 CHAPTER 1. SOLUTIONS TO HOMEWORK PROBLEMS

Problem 6.35 Solution:
This problem is tougher than it looks. The approach is similar to the solution to Problem 6.18. The cache
is not large enough to hold both arrays. References to cache lines for one array evict recently loaded cache
lines from the other array.

dst array
col 0 col 1 col 2 col 3

row 0 m m m m
row 1 m m m m
row 2 m m m m
row 3 m m m m

src array
col 0 col 1 col 2 col 3

row 0 m m h m
row 1 m h m h
row 2 m m h m
row 3 m h m h

Problem 6.36 Solution:
In this case, the cache is large enough to hold both arrays, so the only misses are the initial cold misses.

dst array
col 0 col 1 col 2 col 3

row 0 m h h h
row 1 m h h h
row 2 m h h h
row 3 m h h h

src array
col 0 col 1 col 2 col 3

row 0 m h h h
row 1 m h h h
row 2 m h h h
row 3 m h h h

Problem 6.37 Solution:
This style of problem (and the ones that follow) requires a practical high-level analysis of the cache behavior,
rather than the more tedious step-by-step analysis that we use when we are first teaching students how caches
work. We always include a problem of this type on our exams because it tests a skill the students will need
as working programmers: the ability to look at code and get a feel for how well it uses the caches. This
particular problem is a nice introduction to this type of high-level analysis.

A. Case 1: Assume the cache is 512-bytes, direct-mapped, with 16-byte cache blocks. What is the miss
rate? In this case, each access to x[1][i] conflicts with previous access to x[0][i], so the miss
rate is 100%.

B. Case 2: What is the miss rate if we double the cache size to 1024 bytes? If we double the cache size,
then the entire array fits in the cache, so the only misses are the cold (compulsary) misses for each
new block. Since each block holds four array items, the miss rate is 25%.

C. Case 3: Now assume the cache is 512 bytes, 2-way set associative using an LRU replacement policy,
with 16-byte cache blocks. What is the cache miss rate? Increasing the associativity removes the
conflict misses that occurred in the direct mapped cache of Case 1. The only misses are the cold
misses when each block is loaded, so the miss rate is 25%.

D. For Case 3, will a larger cache size help to reduce the miss rate? No. Even if the cache were infinitely
large, we would still have the compulsary misses required to load each new cache block.1.6. CHAPTER 6: THE MEMORY HIERARCHY 93

E. For Case 3, will a larger block size help to reduce the miss rate? Yes. A larger block size would
reduce the number of compulsary misses by an amount inversely proportional to the increase. For
example, if we doubled the block size, we decrease the miss rate by half.

Problem 6.38 Solution:
Here are the miss rates for the different functions and values of N:

Function N = 64 N = 60

sumA 25% 25%

sumB 100% 25%

sumC 50% 25%

Problem 6.39 Solution:
In this problem, each cache line holds two 16-byte point color structures. The square array is 256×
16 = 4096 bytes and the cache is 2048 bytes, so the cache can only hold half of the array. Since the code
employs a row-wise stride-1 reference pattern, the miss pattern for each cache line is a miss, followed by 7
hits.

A. What is the total number of writes? 1024 writes.

B. What is the total number of writes that miss in the cache? 128 misses.

C. What is the miss rate? 128/1024 = 12.5%.

Problem 6.40 Solution:
Since the cache cannot hold the entire array, the column-wise scan of the second half of the array evicts the
lines loaded during the scan of the first half. So for every structure, we have a miss followed by 3 hits.

A. What is the total number of writes? 1024 writes.

B. What is the total number of writes that miss in the cache? 256 writes.

C. What is the miss rate? 256/1024 = 25%.

Problem 6.41 Solution:
Both loops access the array in row-major order. The first loop performs 256 writes. Since each cache line
holds two structures, half of these references hit and half miss. The second loop performs a total of 768
writes. For each pair of structures, there is an initial cold miss, followed by 5 hits. So this loop experiences
a total of 128 misses. Combined, there are 256 + 768 = 1024 writes, and 128 + 128 = 256 misses.

Page 8 of 16

Problem 6

Problem 9.11, on page 849, from our CS:APP2e

104 CHAPTER 1. SOLUTIONS TO HOMEWORK PROBLEMS

Problem 8.26 Solution:
Writing a simple shell with job control is a fascinating project that ties together many of the ideas in this
chapter. The distribution of the Shell Lab on the CS:APP2 Instructor Site

http://csapp2.cs.cmu.edu

provides the reference solution.

1.9 Chapter 9: Virtual Memory

Problem 9.11 Solution:
The following series of address translation problems give the students more practice with translation process.
These kinds of problems make excellent exam questions because they require deep understanding, and they
can be endlessly recycled in slightly different forms.

A. 00 0010 0111 1100

B. VPN: 0x9
TLBI: 0x1
TLBT: 0x2
TLB hit? N
page fault? N
PPN: 0x17

C. 0101 1111 1100

D. CO: 0x0
CI: 0xf
CT: 0x17
cache hit? N
cache byte? -

Problem 9.12 Solution:

A. 00 0011 1010 1001

B. VPN: 0xe
TLBI: 0x2
TLBT: 0x3
TLB hit? N
page fault? N

Page 9 of 16

Problem 7

Problem 9.12, on page 850, from our CS:APP2e

104 CHAPTER 1. SOLUTIONS TO HOMEWORK PROBLEMS

Problem 8.26 Solution:
Writing a simple shell with job control is a fascinating project that ties together many of the ideas in this
chapter. The distribution of the Shell Lab on the CS:APP2 Instructor Site

http://csapp2.cs.cmu.edu

provides the reference solution.

1.9 Chapter 9: Virtual Memory

Problem 9.11 Solution:
The following series of address translation problems give the students more practice with translation process.
These kinds of problems make excellent exam questions because they require deep understanding, and they
can be endlessly recycled in slightly different forms.

A. 00 0010 0111 1100

B. VPN: 0x9
TLBI: 0x1
TLBT: 0x2
TLB hit? N
page fault? N
PPN: 0x17

C. 0101 1111 1100

D. CO: 0x0
CI: 0xf
CT: 0x17
cache hit? N
cache byte? -

Problem 9.12 Solution:

A. 00 0011 1010 1001

B. VPN: 0xe
TLBI: 0x2
TLBT: 0x3
TLB hit? N
page fault? N

1.9. CHAPTER 9: VIRTUAL MEMORY 105

PPN: 0x11

C. 0100 0110 1001

D. CO: 0x1
CI: 0xa
CT: 0x11
cache hit? N
cache byte? -

Problem 9.13 Solution:

A. 00 0000 0100 0000

B. VPN: 0x1
TLBI: 0x1
TLBT: 0x0
TLB hit? N
page fault? Y
PPN: -

C. n/a

D. n/a

Problem 9.14 Solution:
This problem has a kind of “gee whiz!” appeal to students when they realize that they can modify a disk file
by writing to a memory location. The template is given in the solution to Problem 9.5. The only tricky part
is to realize that changes to memory-mapped objects are not reflected back unless they are mapped with the
MAP SHARED option.

code/vm/mmapwrite-ans.c

1 #include "csapp.h"
2

3 /*
4 * mmapwrite - uses mmap to modify a disk file
5 */
6 void mmapwrite(int fd, int len)
7 {
8 char *bufp;
9

10 bufp = Mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
11 bufp[0] = ’J’;
12 }

Page 10 of 16

Problem 8

Problem 9.13, on page 851, from our CS:APP2e

1.9. CHAPTER 9: VIRTUAL MEMORY 105

PPN: 0x11

C. 0100 0110 1001

D. CO: 0x1
CI: 0xa
CT: 0x11
cache hit? N
cache byte? -

Problem 9.13 Solution:

A. 00 0000 0100 0000

B. VPN: 0x1
TLBI: 0x1
TLBT: 0x0
TLB hit? N
page fault? Y
PPN: -

C. n/a

D. n/a

Problem 9.14 Solution:
This problem has a kind of “gee whiz!” appeal to students when they realize that they can modify a disk file
by writing to a memory location. The template is given in the solution to Problem 9.5. The only tricky part
is to realize that changes to memory-mapped objects are not reflected back unless they are mapped with the
MAP SHARED option.

code/vm/mmapwrite-ans.c

1 #include "csapp.h"
2

3 /*
4 * mmapwrite - uses mmap to modify a disk file
5 */
6 void mmapwrite(int fd, int len)
7 {
8 char *bufp;
9

10 bufp = Mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
11 bufp[0] = ’J’;
12 }

Page 11 of 16

Additional Practice Problems
1. Problem 6.32, on page 634, from our CS:APP2e

1.6. CHAPTER 6: THE MEMORY HIERARCHY 91

Problem 6.32 Solution:
Address 0x071A

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 1 1 0 1 0

CT CT CT CT CT CT CT CT CI CI CI CO CO

B. Memory reference:

Parameter Value
Block Offset (CO) 0x2
Index (CI) 0x6
Cache Tag (CT) 0x38
Cache Hit? (Y/N) Y
Cache Byte returned 0xEB

Problem 6.33 Solution:
Address 0x16E8

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 1 0 1 0 0 0

CT CT CT CT CT CT CT CT CI CI CI CO CO

B. Memory reference:

Parameter Value
Block Offset (CO) 0x0
Index (CI) 0x2
Cache Tag (CT) 0xB7
Cache Hit? (Y/N) N
Cache Byte returned –

Problem 6.34 Solution:
There are two valid lines in Set 2, the first with a tag of 0xBC, and the second with a tag of 0xB6. The
addresses that hit in the first line have the binary form 1 0111 1000 10xx, which corresponds to the
address range of 0x1788 – 0x178b. Similarly, the addresses that hit in the second line have the binary
form 1 0110 1100 10xx, and thus an address range of 0x16c8 – 0x16cb.

Page 12 of 16

2. Problem 6.33 on page 635, from our CS:APP2e

1.6. CHAPTER 6: THE MEMORY HIERARCHY 91

Problem 6.32 Solution:
Address 0x071A

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 1 1 0 1 0

CT CT CT CT CT CT CT CT CI CI CI CO CO

B. Memory reference:

Parameter Value
Block Offset (CO) 0x2
Index (CI) 0x6
Cache Tag (CT) 0x38
Cache Hit? (Y/N) Y
Cache Byte returned 0xEB

Problem 6.33 Solution:
Address 0x16E8

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 1 0 1 0 0 0

CT CT CT CT CT CT CT CT CI CI CI CO CO

B. Memory reference:

Parameter Value
Block Offset (CO) 0x0
Index (CI) 0x2
Cache Tag (CT) 0xB7
Cache Hit? (Y/N) N
Cache Byte returned –

Problem 6.34 Solution:
There are two valid lines in Set 2, the first with a tag of 0xBC, and the second with a tag of 0xB6. The
addresses that hit in the first line have the binary form 1 0111 1000 10xx, which corresponds to the
address range of 0x1788 – 0x178b. Similarly, the addresses that hit in the second line have the binary
form 1 0110 1100 10xx, and thus an address range of 0x16c8 – 0x16cb.

Page 13 of 16

3. Problem 6.39 on page 637, from our CS:APP2e

1.6. CHAPTER 6: THE MEMORY HIERARCHY 93

E. For Case 3, will a larger block size help to reduce the miss rate? Yes. A larger block size would
reduce the number of compulsary misses by an amount inversely proportional to the increase. For
example, if we doubled the block size, we decrease the miss rate by half.

Problem 6.38 Solution:
Here are the miss rates for the different functions and values of N:

Function N = 64 N = 60

sumA 25% 25%

sumB 100% 25%

sumC 50% 25%

Problem 6.39 Solution:
In this problem, each cache line holds two 16-byte point color structures. The square array is 256×
16 = 4096 bytes and the cache is 2048 bytes, so the cache can only hold half of the array. Since the code
employs a row-wise stride-1 reference pattern, the miss pattern for each cache line is a miss, followed by 7
hits.

A. What is the total number of writes? 1024 writes.

B. What is the total number of writes that miss in the cache? 128 misses.

C. What is the miss rate? 128/1024 = 12.5%.

Problem 6.40 Solution:
Since the cache cannot hold the entire array, the column-wise scan of the second half of the array evicts the
lines loaded during the scan of the first half. So for every structure, we have a miss followed by 3 hits.

A. What is the total number of writes? 1024 writes.

B. What is the total number of writes that miss in the cache? 256 writes.

C. What is the miss rate? 256/1024 = 25%.

Problem 6.41 Solution:
Both loops access the array in row-major order. The first loop performs 256 writes. Since each cache line
holds two structures, half of these references hit and half miss. The second loop performs a total of 768
writes. For each pair of structures, there is an initial cold miss, followed by 5 hits. So this loop experiences
a total of 128 misses. Combined, there are 256 + 768 = 1024 writes, and 128 + 128 = 256 misses.

Page 14 of 16

4. Problem 9.15 on page 851, from our CS:APP2e

106 CHAPTER 1. SOLUTIONS TO HOMEWORK PROBLEMS

13
14 /* mmapwrite driver */
15 int main(int argc, char **argv)
16 {
17 int fd;
18 struct stat stat;
19
20 /* check for required command line argument */
21 if (argc != 2) {
22 printf("usage: %s <filename>\n", argv[0]);
23 exit(0);
24 }
25
26 /* open the input file and get its size */
27 fd = Open(argv[1], O_RDWR, 0);
28 fstat(fd, &stat);
29 mmapwrite(fd, stat.st_size);
30 exit(0);
31 }

code/vm/mmapwrite-ans.c

Problem 9.15 Solution:
This is another variant of Problem 9.6.

Request Block size (decimal bytes) Block header (hex)
malloc(3) 8 0x9
malloc(11) 16 0x11
malloc(20) 24 0x19
malloc(21) 32 0x21

Problem 9.16 Solution:
This is a variant of Problem 9.7. The students might find it interesting that optimized boundary tags coa-
lescing scheme, where the allocated blocks don’t need a footer, has the same minimum block size (16 bytes)
for either alignment requirement.

Alignment Allocated block Free block Minimum block size (bytes)
Single-word Header and footer Header and footer 20
Single-word Header, but no footer Header and footer 16
Double-word Header and footer Header and footer 24
Double-word Header, but no footer Header and footer 16

Problem 9.17 Solution:
This is a really interesting problem for students to work out. At first glance, the solution appears trivial. You
define a global roving pointer (void *rover) that points initially to the front of the list, and then perform
the search using this rover:

code/vm/malloc2-ans.c

Page 15 of 16

5. Problem 9.16 on page 852, from our CS:APP2e

106 CHAPTER 1. SOLUTIONS TO HOMEWORK PROBLEMS

13
14 /* mmapwrite driver */
15 int main(int argc, char **argv)
16 {
17 int fd;
18 struct stat stat;
19
20 /* check for required command line argument */
21 if (argc != 2) {
22 printf("usage: %s <filename>\n", argv[0]);
23 exit(0);
24 }
25
26 /* open the input file and get its size */
27 fd = Open(argv[1], O_RDWR, 0);
28 fstat(fd, &stat);
29 mmapwrite(fd, stat.st_size);
30 exit(0);
31 }

code/vm/mmapwrite-ans.c

Problem 9.15 Solution:
This is another variant of Problem 9.6.

Request Block size (decimal bytes) Block header (hex)
malloc(3) 8 0x9
malloc(11) 16 0x11
malloc(20) 24 0x19
malloc(21) 32 0x21

Problem 9.16 Solution:
This is a variant of Problem 9.7. The students might find it interesting that optimized boundary tags coa-
lescing scheme, where the allocated blocks don’t need a footer, has the same minimum block size (16 bytes)
for either alignment requirement.

Alignment Allocated block Free block Minimum block size (bytes)
Single-word Header and footer Header and footer 20
Single-word Header, but no footer Header and footer 16
Double-word Header and footer Header and footer 24
Double-word Header, but no footer Header and footer 16

Problem 9.17 Solution:
This is a really interesting problem for students to work out. At first glance, the solution appears trivial. You
define a global roving pointer (void *rover) that points initially to the front of the list, and then perform
the search using this rover:

code/vm/malloc2-ans.c

Page 16 of 16

