O EP T HONS

@ @SN
Sltre

Control Flow

m Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
: inst
Time .2
Inst,
inst,
<shutdown>

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
" Jumps and branches
= Call and return

Both react to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= data arrives from a disk or a network adapter
" jnstruction divides by zero
= user hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

Exceptional Control Flow

m Exists at all levels of a computer system
m Low level mechanisms

= Exceptions

= change in control flow in response to a system event
(i.e., change in system state)

= Combination of hardware and OS software

m Higher level mechanisms
= Process context switch
= Signals
= Nonlocal jumps: setimp()/longjmp()
" |mplemented by either:
= OS software (context switch and signals)
= Clanguage runtime library (nonlocal jumps)

Exceptions

m An exception is a transfer of control to the OS in response to
some event (i.e., change in processor state)

User Process OS

event — |_current ¥, exception

>
I_next | exception processing

by exception handler
* return to | _current
*return to |_next
*abort

m Examples:
div by 0, arithmetic overflow, page fault, I/O request completes, Ctrl-C

e MAGICAL SUPERVISOR ST

R EEINE S TATE/CONTROL/ INSTRUCTION/
s C ONFIG REGISTER OPCODE REGISHREE

| 0] | i |
=

SUPERVISOR BIT”
[Normal

Execution
1f NOT supervisor mode AND supervisor opcode —D% e gIC

set supervisor mode =1 and do exception
else
execute opcode

Exception Logic

e MAGICAL SUPERVISOR ST

R EEINE S TATE/CONTROL/

INSTRUCTION/

s C ONFIG REGISTER OPCODE REGISHREE

| 0] |

SUPERVISOR BT

{>0_.

il |

MOV TO GPR 0... t
MOV TO PTBR l...

MOV TO MSR/CR ...

ENABLE INTERRUPTS I...

Normal
Execution

_% Logic

DISABLE INTERRUPTS 1...

Exception Logic

4.5. PRIVILEGE LEVELS

The processor’s segment-protection mechanism recognizes 4 privilege levels, numbered from O to 3. The
greater numbers mean lesser privileges. Figure 4-2 shows how these levels of privilege can be interpreted as
rings of protection. The center (reserved for the most privileged code, data, and stacks) is used for the segments
containing the critical software, usually the kernel of an operating system. Outer rings are used for less critical
software. (Systems that use only 2 of the 4 possible privilege levels should use levels 0 and 3.)

IA32 System Programming Guide Version 3

Protection Rings

Operating
System >
Kernel Level O

Operating System
Services

Level 1

Level 2

Applications

Figure 4-2. Protection Rings

Interrupt Vectors

Exception
numbers

VvTable

Exception

0

1

J
.//

2

o

n-1

by

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

Each type of event has a
unique exception number k

k = index into exception table
(a.k.a. interrupt vector)

Handler k is called each time
exception k occurs

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin
" Handler returns to “next” instruction

m Examples:

= |/O interrupts
= hitting Ctrl-C at the keyboard
= arrival of a packet from a network
= arrival of data from a disk

" Hard reset interrupt
= hitting the reset button

= Soft reset interrupt
= hitting Ctrl-Alt-Delete on a PC

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= Intentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= unintentional and unrecoverable

= Examples: parity error, machine check

= Aborts current program

Trap Example: Opening File

m Usercalls: open (filename, options)
m Function open executes system call instruction int

0804d070 < 1libc open>:

804d082: cd 80 int $0x80

804d084: 5b pop %ebx
User Process oS
exception

int v

>
pop .
returns

'

m OS must find or create file, get it ready for reading or writing

m Returns integer file descriptor

Fault Example: Page Fault

m User writes to memory location

m That portion (page) of user’s memory
is currently on disk

int a[1000];
main ()
{

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd, 0x8049d10
User Process 0S
exception: page fault
movl >
Create page and
returns load into memory

m Page handler must load page into physical memory

m Returns to faulting instruction
m Successful on second try

Fault Example: Invalid Memory Reference

int a[l1000];
main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process 0S

l exception: page fault

movl
] detect invalid address
» signal process

m Page handler detects invalid address
m Sends SIGSEGV signal to user process

m User process exits with “segmentation fault”

Exception Table IA32 (Excerpt)

Exception Number Description Exception Class
0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-127 OS-defined Interrupt or trap
128 (0x80) System call Trap

129-255 OS-defined Interrupt or trap

Check pp. 183:
http://download.intel.com/design/processor/manuals/253665.pdf

Processes

m Definition: A process is an instance of a running program.
" One of the most profound ideas in computer science
" Not the same as “program” or “processor”

m Process provides each program with two key abstractions:
" Logical control flow
= Each program seems to have exclusive use of the CPU
" Private virtual address space
= Each program seems to have exclusive use of main memory

m How are these Illlusions maintained?
" Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system
= we’ll talk about this in a couple of weeks

Concurrent Processes

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples:

" Concurrent: A& B, A&C
= Sequential: B& C

Process A Process B Process C

Time

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes are
running in parallel with each other

Process A Process B Process C

Time B IS

Context Switching

m Processes are managed by a shared chunk of OS code
called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part
of some user process

m Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code } context switch
Time user code

kernel code } context switch

user code

—

period T o
(in seconds)

PIN'-AD34: INTR — Active maskable Interrupt

Exception
numbers
code for
exception handler 0
Exception code for
VTable .
exception handler 1
0 ' P
1 4 code for
2 o~ exception handler 2
n-1| o~

code for
exception handler n-1

OS CONTEXT SWITCH CODE:

1. SAVE GPRS TO CURRENT
PROCESS’S CONTEXT DATA
STRUCTURE

2. SELECT NEW PROCESS TO RUN

3. LOAD GPRS AND PTBR FROM
NEW PROCESS’S CONTEXT

GPRS (%eax,...)

GPRS prp " ' BR
PTBR

GPR

fork: Creating New Processes

m int fork (void)

creates a new process (child process) that is identical to the calling
process (parent process)

= returns O to the child process

returns child’s pid to the parent process

pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

m Forkis interesting (and often confusing) because
it is called once but returns twice

"N

Understanding fork

Process n

pid t pid = fork();
if (pid 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n");

}

pid t pid = fork();
if (pid 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

pid t pid = fork();
if (pid 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n") ;
}

hello from parent

Which one is first?

Child Process m

pid t pid = fork();
if (pid 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n") ;
}

pid t pid = fork();
if (pid 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n");
}

pid t pid = fork();
if (pid 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n") ;

}

hello from child

Fork Example #1

m Parent and child both run same code
= Distinguish parent from child by return value from fork
m Start with same state, but each has private copy

" |ncluding shared output file descriptor

= Relative ordering of their print statements undefined

void forkl ()
{
int x = 1;
pid t pid = fork();
if (pid == 0) {
printf ("Child has x = %d\n", ++x);
} else {
printf ("Parent has x = %d\n", --x);

}

printf ("Bye from process %d with x = %d\n", getpid(), x);

Fork Example #2

m Both parent and child can continue forking

void fork2 ()
{
printf ("LO\n") ;

Bye
fork () ; L1 | Bye
irintf("Ll\n"); Bye

°]_:k() ’ L0 |11 | Bye
printf ("Bye\n") ;

Fork Example #3

m Both parent and child can continue forking

void fork3()

{
printf ("LO\n") ;
fork () ;
printf ("L1\n") ;
fork () ;
printf ("L2\n") ;
fork () ;
printf ("Bye\n") ;

LO

L2

L2

L1l

L1l

L2

L2

Fork Example #4

m Both parent and child can continue forking

void fork4 ()
{
printf ("LO\n") ;
if (fork() '= 0) {
printf ("L1\n");
if (fork() '= 0) {
printf ("L2\n") ;
fork () ;
}

}
printf ("Bye\n") ;

LO

Bye

L1 | L2

Bye
Bye

exit: Ending a process

m void exit(int status)

= exits a process
= Normally return with status O
" atexit () registers functions to be executed upon exit

void cleanup (void) {
printf ("cleaning up\n") ;

}

void fork6 () {
atexit (cleanup) ;
fork () ;
exit (0) ;

Zombies

m Ildea
= When process terminates, still consumes system resources
= Various tables maintained by OS
= Called a “zombie”
= Living corpse, half alive and half dead

m Reaping
= Performed by parent on terminated child
® Parent is given exit status information
= Kernel discards process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then child will be
reaped by init process

= So, only need explicit reaping in long-running processes
= e.g., shells and servers

Zombie
Example

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6
Terminating Child, PID
linux> ps
PID TTY TIME
6585 ttyp9 00:00:00
6639 ttyp9 00:00:03
6640 ttyp9 00:00:00
6641 ttyp9 00:00:00
linux> kill 6639

[1] Terminated
linux> ps
PID TTY TIME

6585 ttyp9 00:00:00
6642 ttyp9 00:00:00

void fork7 ()
{

if (fork() == 0) {
/* Child */
printf ("Terminating Child, PID = %d\n",
getpid());
exit (0) ;
} else {
printf ("Running Parent, PID = %d\n",
getpid()) ;
while (1)
639 ; /* Infinite loop */
= 6640 }
}
CMD
tcsh .
I m ps shows child process as
forks <defunct> “defunct”
ps
m Killing parent allows child to be
reaped by init
CMD
tcsh

PS

void fork8 ()

Nonterminating |' . om0 = o ¢
. /* Child */
Chlld Example printf ("Running Child, PID = %d\n",
getpid()) ;
while (1)
; /* Infinite loop */
} else {
printf ("Terminating Parent, PID = %d\n",
getpid()) ;
exit (0) ;
}
}
linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676 m Child process still active even
linux> ps though parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttypd 00:00:06 forks m Must kill explicitly, or else will keep

6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

running indefinitely

wait: Synchronizing with Children

m int wait(int *child status)
= suspends current process until one of its children terminates
= returnvalue is the pid of the child process that terminated

" ifchild status != NULL, then the object it points to will be set
to a status indicating why the child process terminated

wait: Synchronizing with Children

void fork9 () {
int child status;

if (fork() == 0) {
} printf ("HC: hello from child\n") ; HC Bye
else {
printf ("HP: hello from parent\n"); HP CT Bye

wait (&child status);

printf ("CT: child has terminated\n");
}
printf ("Bye\n") ;
exit () ;

wait () Example

m If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void forklO ()
{
pid t pid[N];
int 1i;
int child status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = 0; i < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminate abnormally\n", wpid)

waitpid () : Waiting for a Specific Process

m waitpid(pid, &status, options)
" suspends current process until specific process terminates
= various options (that we won’t talk about)

void forkll ()
{
pid t pid[N];
int 1i;
int child status;
for (i = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = 0; 1 < N; i++) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid);

execve: Loading and Running Programs

Oxbfffffff
int execve (

char *filename,
char *argv]|],
char *envp

)

Loads and runs
= Executable filename
= With argument list argv
= And environment variable 1ist envp

Does not return (unless error)
Overwrites process, keeps pid
Environment variables:

" “name=value” strings

Stack

Null-terminated
environment
variable strings

Null-terminated
commandline
arg strings

unused

envp[n] = NULL

envp[n-1]

envp[O0]

argv[argc] = NULL

argv[argc-1]

argv|[0]

Linker vars

envp

argv

argc

execve: Example

envp[n] = NULL
envp[n-1] —>

envp|[0] —

argv[argc] = NULL
argv[argc-1] —

argv[0] >

“PWD=/usr/droh”
“PRINTER=iron”
“USER=droh”

“/usr/include”
_lt//
\\ls//

execl and exec Family

m int execl (char *path, char *arg0, char *argl, .., 0)
m Loads and runs executable at path with args arg0, argl, ...
= pathis the complete path of an executable object file
= By convention, argO0 is the name of the executable object file
= “Real” arguments to the program start with argl, etc.
= List of argsis terminated by a (char *) 0 argument

" Environment taken from char **environ, which points to an array
of “name=value” strings:

= USER=ganger
= LOGNAME=ganger
= HOME=/afs/cs.cmu.edu/user/ganger

m Returns -1 if error, otherwise doesn’t return!

m Family of functions includes execv, execve (base
function), execvp, execl, execle, and execlp

exec: Loading and Running Programs

main () {
if (fork() == 0) {
execl ("/usr/bin/cp", "cp", "foo", "bar", 0);
}
wait (NULL) ;
printf ("copy completed\n") ;
exit() ;

Summary

m Exceptions

= Events that require nonstandard control flow

= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
= Only one can execute at a time, though

= Each process appears to have total control of
processor + private memory space

Summary (cont.)

m Spawning processes
" Callto fork

® One call, two returns

m Process completion
" Callexit
" One call, no return

m Reaping and waiting for Processes
" Callwaitorwaitpid

m Loading and running Programs
= Callexecl (orvariant)
" One call, (normally) no return

