(OIFILE SYSTENS

@ @SN

IFERATING SYSTERS

(SYS

"MS SOFTWARE)

Application programs

Operating system

} Software
Layered Model

Processor Main memory /O devices } Hardware
Prfies\ses
- vamemoy | SYSTEM SOFTWARE
' g I CREATES
" —— ABSTRACTIONS
Processor Main memory I/O devices

Time

read ~~~*

Disk interrupt ---»

Return ___,
from read

PROC

Process A

ol

Process B

User code

Context

Kernel code } switch

User code

- - - - - -

\

Context

Kernel code } switch

User code

M

VIRTUAL MEMORY

» Memory
Kemel virtual memo invisible to
Y user code
User stack
(created at runtime) |
v

A

|

Memory mapped region for
shared libraries

T

Run-time heap
(created by malloc)

printf function

Read/write data
} Loaded from the

hello executable file
Read-only code and data

0x08048000 (32)
0x00400000 (&4)

S 1s

hello hello.c hello.i
$ hexdump -C hello.c
00000000 23 69 6e 63 6¢C
00000010 68 3e 0Oa 0a 69
00000020 20 61 72 67 63
00000030 67 76 29 0a 7b
00000040 22 48 65 6c 6¢C
00000050 6e 22 29 3b 0a
00000060 3b 0O0a 7d Oa

00000064

75
6e
2c
O0a
6f
20

64
74
20
20
20
20

hello.o

65
Oa
63
20
57
20

20
6d
68
20
6f
72

3c
61
61
70
72
65

hello.s

73
69
72
72
6cC
74

74
6e
20
69
64
75

64
28
2a
6e
21
72

69
69
2a
74
21
6e

6f
6e
61
66
21
20

2e
74
72
28
5¢
30

|#include <stdio. |
|h>..int.main(int|
| argc, char **ar|

|lgv).{. printf (|
| "Hello World!!!\|
In");. return O]
Petel

3
B
T

COMPUTER

*Storage
*Processing

COMPUTES

NTERNALS

Interrupts
Processor <

Memory- /O bus

110 110 /10
controller controller controller

J

Graphics
output

/[Network

Bus = control lines + data lines
Control lines carry requests, acknowledgements, type of information
Data lines carry data, complex commands, or addresses

BSEHIND TH

CURTAINS

#include <stdio.h>
* What exactly is a program?

int main(void)

* How are they really constructed?

{

» With “C” we can more directly printf("hello world!!\n®);
explore these things. return |,

j

printf.o
L,
hello.c _ proz:aes-sor hello.i | Compiler [hello.s |Assembler| hello.o | Linker hello
(ccl) (as) (14)
Source (cpp) Modified Assembly Relocatable Executable
program source program object object
(text) program (text) programs program

(text) (binary) (binary)

EEIELLO: STARTS WITHT IS

CPU

Register file

PC : ALU

System bus Memory bus

Main | "hello”
memory

HHF>

Expansion slots for
other devices such
Graphics Disk as network adapters

adapter controller

T l

Mouse Keyboard Display :
user S

types
"hello”

controli§r

CPU

L OAD

Register file

PC

I L

—)

ALU

Bus interface

-

: MORE 183

System bus

IO
brigige

Memqry bus

1
1
1
v

Main "hello,world\n"
memory

hello code

<
{} @ /O bus

USB

controller

T

T

Graphics
adapter

Mouse Keyboard

l

Display

HHF>

Expansion slots for
other devices such

as network adapters

hello executable
stored on disk

EREC U |

- AN

CPU
Register file
PC : : ALU
Bus inte

System bus

D MG

O

Memory bus

1
1
1
1
v

Main |"hello,world\n"
memory

hello code

controller

I/O bus

USB

T

Mouse Keyboard

T

Display

"hello,world\n"

HHF>

l ‘ Expansion slots for
other devices such

Disk as network adapters

controller
3

A 4

hello executable
stored on disk

User level proglacs TH
L Noumal proglairs

a Ketnel
applications [Systern <ll intetfrce
~
y y
Vittval filesysten Meimoty Plocess Abstract hetwork
tmahageweht imahager imahaget selvices [sockets))

TCPAP protocol

duivels

IDE hatddisk Floppy disk Ethethet catd
diiver duiver duiver

Hardwate
l Ethethet card I
IDE hard disk Floppy disk

http://www.makelinux.net/kernel_map/

Linux Kernel v2.4.9

http//www.makelinux.net/kernel_map/

ABSTRACTIONS ON
ABSTRACTIONS

Virtual machine

OF g8

A~

a8 N
E Processes 5
: e N :
: " Instruction set I
| ' architecture Virtual memory :
: : A :
i - Y ™
: : ! Files !
: | | A |
I 1 1 'd N
Operating system Processor Main memory I/O devices

Unix Files

m A Unix file is a sequence of m bytes:
= B,B,,...,B,..,B

m-1

m All1/0 devices are represented as files:
= /dev/sda2 (/usr disk partition)
= /dev/tty2 (terminal)

m Even the kernel is represented as a file:
" /dev/kmem (kernel memory image)
= /proc (kernel data structures)

Unix File Types

Regular file

" Fijle containing user/app data (binary, text, whatever)

= OS does not know anything about the format

= other than “sequence of bytes”, akin to main memory

Directory file

= A file that contains the names and locations of other files
Character special and block special files

= Terminals (character special) and disks (block special)
FIFO (named pipe)

= A file type used for inter-process communication

Socket

= A file type used for network communication between processes

Unix 1/0

m Key Features

" Elegant mapping of files to devices allows kernel to export simple
interface called Unix I/O

" |mportant idea: All input and output is handled in a consistent and
uniform way

m Basic Unix I/O operations (system calls):

" Opening and closing files
= open()andclose()

= Reading and writing a file
= read () and write ()

" Changing the current file position (seek)
= indicates next offset into file to read or write
= 1seek ()

By [By [®°° B1| Bk [Bkia| ®®®

t

Current file position = k

Opening Files

m Opening a file informs the kernel that you are getting ready to
access that file

int £d; /* file descriptor */

if ((fd = open("/etc/hosts", O RDONLY)) < 0) ({
perror ("open") ;
exit(1l);

m Returns a small identifying integer file descriptor
" fd == -1 indicates that an error occurred

m Each process created by a Unix shell begins life with three ope
files associated with a terminal:

= 0O:standard input
= 1:standard output
= 2:standard error

Closing Files

m Closing a file informs the kernel that you are finished
accessing that file

int f£d; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror ("close") ;
exit(1l);

m Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

m Moral: Always check return codes, even for seemingly
benign functions such as close ()

Reading Files

m Reading a file copies bytes from the current file position to
memory, and then updates file position

char buf[512];

int £fd; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror ("read") ;
exit(1l);

m Returns number of bytes read from file £d into buf
" Returntype ssize tissigned integer
" nbytes < 0 indicates that an error occurred

= Short counts (nbytes < sizeof (buf)) are possible and are not
errors!

Writing Files

m Writing a file copies bytes from memory to the current file
position, and then updates current file position

char buf[512];

int £fd; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror ("write") ;
exit(1l);

m Returns number of bytes written from buf to file £d
" nbytes < 0 indicates that an error occurred

= As with reads, short counts are possible and are not errors!

Simple Unix I/0O example

m Copying standard in to standard out, one byte at a time

#include "csapp.h"

int main (void)

{

char c;
while(Read(STDIN_FILENO, &, 1) '= 0)
Write (STDOUT FILENO, &c, 1);
exit(0) ;
} cpstdin.c

Note the use of error handling wrappers for read and write
(Appendix A).

Dealing with Short Counts

m Short counts can occur in these situations:
" Encountering (end-of-file) EOF on reads

= Reading text lines from a terminal
= Reading and writing network sockets or Unix pipes

m Short counts never occur in these situations:
= Reading from disk files (except for EOF)
= Writing to disk files

m One way to deal with short counts in your code:

= Use the RIO (Robust I/0) package from your textbook’s csapp.c
file (Appendix B)

File Metadata

m Metadata is data about data, in this case file data

m Per-file metadata maintained by kernel
= accessed by users with the stat and £stat functions

/* Metadata returned by the stat and fstat functions */

struct stat {

dev_t

ino t

mode t
nlink t

uid t

gid t

dev_t

off t
unsigned long
unsigned long
time t

time t

time t

st _dev;

st ino;

st mode;
st nlink;
st uid;

st gid;

st _rdev;
st size;
st blksize;
st blocks;
st atime;
st mtime;
st ctime;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

device */

inode */

protection and file type */
number of hard links */

user ID of owner */

group ID of owner */

device type (if inode device) */
total size, in bytes */
blocksize for filesystem I/O */
number of blocks allocated */
time of last access */

time of last modification */
time of last change */

Example of Accessing File Metadata

/* statcheck.c - Querying and manipulating a file’s meta data */
#include "csapp.h"

unix> ./statcheck statcheck.

int main (int argc, char **argv) type: regular, read: yes

{ unix> chmod 000 statcheck.c
struct stat stat; unix> ./statcheck statcheck.
char *type, *readok; type: regular, read: no

unix> ./statcheck
Stat (argv[1l], &stat); type: directory, read: yes
if (S _ISREG(stat.st mode)) unix> ./statcheck /dev/kmem
type = "regular"; type: other, read: yes

else if (S _ISDIR(stat.st mode))
type = "directory";

else
type = "other";

if ((stat.st mode & S IRUSR)) /* OK to read?*/
readok = '"yes";

else
readok = "no";

printf ("type: %s, read: %s\n", type, readok);
exit(0) ;

Accessing Directories

m Only recommended operation on a directory: read its entries
" dirent structure contains information about a directory entry

= DIR structure contains information about directory while stepping
through its entries

#include <sys/types.h>
#include <dirent.h>

{
DIR *directory;

struct dirent *de;

if (! (directory = opendir (dir name)))
error ("Failed to open directory")

while (0 '= (de = readdir (directory))) {

printf ("Found file: %$s\n", de->d name);

}

closedir (directory) ;

How the Unix Kernel Represents Open Files

m Two descriptors referencing two distinct open disk files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

_File A (terminal)

stdin fdO — File access
stdout fd1 — | File pos File size Info in
fent=1 ille type
fd3 ke <::n .yp struct
fd 4 ~— . o
\File B (disk) .
// File access
) File size
File pos

refcnt=1

File type

File Sharing

m Two distinct descriptors sharing the same disk file through
two distinct open file table entries

= E.g., Calling open twice with the same filename argument

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (disk)
stdin fdO — File access
stdout fd1 . . .
File size
stderr fd2 File pos ;
fd 3 refent=1 File type
fd4 .
/
File pos

refcnt=1

How Processes Share Files: Fork()

m A child process inherits its parent’s open files
= Note: situation unchanged by exec functions (use £cntl to change)

m Before fork() call:

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

_File A (terminal)

stdin fdO — File access
stdout fd1 - . . .
File size
stderr fd2 File pos ;
fd 3 refent=1 File type
fd 4 ~_ : :
\-File B (diSk) -
// File access
) File size
File pos

refcnt=1

File type

How Processes Share Files: Fork()

m A child process inherits its parent’s open files
m After fork():

® Child’s table same as parent’s, and +1 to each refcnt

Descriptor table
[one table per process]

Parent

_File A (terminal)

Open file table
[shared by all processes]

P

—

—

File pos

refcnt=2

File B (disk)

—

/ File access

File pos

refcnt=2

v-node table
[shared by all processes]

File access

File size

File type

File size

File type

/O Redirection

m Question: How does a shell implement I/O redirection?

unix> ls > foo.txt

m Answer: By calling the dup2 (o1dfd, newfd) function
= Copies (per-process) descriptor table entry o1d£d to entry newfd

Descriptor table Descriptor table
before dup2 (4,1) after dup2 (4,1)
fd O fd O

fdl|a fdl|b

fd 2 fd 2

fd 3 fd 3

fd4|b fd4 |b

I/O Redirection Example

m Step #1: open file to which stdout should be redirected

= Happens in child executing shell code, before exec

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

“File A
stdin fdO — File access
stdout fd1 - . . .
File size
stderr fd2 File pos ;
fd 3 refent=1 File type
fd 4 ~_ : :
\File B -
// File access
) File size
File pos
refcnt=1 File t.ype

/O Redirection Example (cont.)

m Step #2:calldup2(4,1)
= cause fd=1 (stdout) to refer to disk file pointed at by fd=4

Descriptor table
[one table per process]

stdin fdO
stdout fd1
stderr fd2
fd 3
fd 4

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File A
— File access
File pos File size
refcnt=0 File type
File B
// File access
File pos File size

refcnt=2

File type

Fun with File Descriptors (1)

#include "csapp.h"
int main(int argc, char *argv|[])
{
int £d1, £d4d2, £d3;
char cl, c2, c3;
char *fname = argv[l];
fdl Open (fname, O RDONLY, O0);
£d2 Open (fname, O RDONLY, O0);
fd3 = Open(fname, O RDONLY, O0);
Dup2 (£d2, £d3);
Read (£fdl, &cl, 1) ;
Read (fd2, &c2, 1);
Read (fd3, &c3, 1);
printf("cl = %c, ¢c2 = %c¢, ¢3 = %c\n", cl, c2, c3);
return O;
} ffilesl.c

m What would this program print for file containing “abcde”?

Fun with File Descriptors (2)

#include "csapp.h"
int main(int argc, char *argv][])

{

int £d1;

int s = getpid() & 0x1;

char cl, c2;

char *fname = argv[1l];

fdl = Open(fname, O RDONLY, O0);
Read (fdl, &cl, 1);

if (fork()) { /* Parent */

sleep(s) ;

Read (fdl, &c2, 1);

printf ("Parent: cl = %c, c2 = %c\n", cl, c2);
} else { /* Child */

sleep(1l-s);

Read (fdl, &c2, 1) ;
printf ("Child: cl = %c, c2 = %$c\n", cl, c2);
}

return 0;
} ffiles2.c

m What would this program print for file containing “abcde”?

Fun with File Descriptors (3)

#include "csapp.h"

int main(int argc, char *argv[])

{
int £d1, £d4d2, £d3;
char *fname = argv[1l];

Write (fdl, "pgrs", 4);

fd3 = Open (fname, O APPEND|O WRONLY, 0);
Write (£d3, "jklmn", 5);

fd2 = dup(fdl); /* Allocates descriptor */
Write (£d2, "wxyz", 4);

Write (£d3, "ef", 2);

return O;

fdl = Open (fname, O CREAT|O TRUNC|O RDWR, S IRUSR|S IWUSR) ;

ffiles3.c

m What would be the contents of the resulting file?

Standard 1/O Functions

m The Cstandard library (1ibc . so) contains a collection of
higher-level standard I/0 functions
" Documented in Appendix B of K&R.

m Examples of standard 1/0O functions:
= QOpening and closing files (fopen and fclose)
= Reading and writing bytes (fread and fwrite)
= Reading and writing text lines (Egets and £puts)
" Formatted reading and writing (Escanf and fprintf)

Standard I/O Streams

m Standard I/O models open files as streams

= Abstraction for a file descriptor and a buffer in memory.
= Similar to buffered RIO

m C programs begin life with three open streams
(defined in stdio.h)
" stdin (standard input)

= stdout (standard output)
" stderr (standard error)

#include <stdio.h>

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

int main() {
fprintf (stdout,

}

/* standard input (descriptor 0) */
/* standard output (descriptor 1) */
/* standard error (descriptor 2) */

"Hello, world\n") ;

Buffering in Standard 1/0O

m Standard I/O functions use buffered 1/O

printf ("h") ;

printf ("e") ;

printf ("1") ;

printf ("1") ;

printf ("o") ;

buf l printf ("\n") ;

<
<
<

3 |«
[()

o I \n

fflush (stdout) ;

v

write (1, buf, 6);

m Buffer flushed to output fd on “\n” or ££1ush () call

Standard 1/0 Buffering in Action

m You can see this buffering in action for yourself, using the
always fascinating Unix strace program:

#include <stdio.h> linux> strace ./hello
execve ("./hello", ["hello"], [/* ... */1).
int main|() .« ..
{ write(l, "hello\n", 6) = 6
printf ("h") ; .-..
printf ("e") ; exit group (0) = ?
printf ("1") ;
printf ("1") ;

printf("o") ;
printf ("\n") ;
fflush (stdout) ;
exit (0) ;

For Further Information

m The Unix bible:

= W. Richard Stevens & Stephen A. Rago, Advanced Programming in
the Unix Environment, 2" Edition, Addison Wesley, 2005

= Updated from Stevens’s 1993 classic text.

m Stevens is arguably the best technical writer ever.
= Produced authoritative works in:
= Unix programming
= TCP/IP (the protocol that makes the Internet work)
= Unix network programming
= Unix IPC programming

m Tragically, Stevens died Sept. 1, 1999

= But others have taken up his legacy

NETWORKS AS O D

CPU chip
Register file

PC ALU

(3

it — -~ l
Bus interface <::> bzgge < >

System bus Memory bus

—VIE

Main
memory

& I Expansion slots

T T

HHF>

\V4
USB Graphics Disk Network
controller adapter controller adapter
Mouse Keyboard Monitor - I
[Network J

