Amity School of Engineering & Technology
Amity University

Object Oriented System Design
Code: CSE416
Prepared By

Hari Mohan Pandey
Assistant Professor, CSE Department
hmpandey@amity.edu

Module Notes

Department of Computer Science & Engineering
ODD Semester 2014

Object Oriented System Design Page: 1/74

UNIT-3

DIAGRAMS

3.1 Sequence diagrams

A sequence diagram is an interaction diagram that details how operations are carried out -

- what messages are sent and when. Sequence diagrams are organized according to time.

The time progresses as you go down the page. The objects involved in the operation are

listed from left to right according to when they take part in the message sequence.

Below is a sequence diagram for making a hotel reservation. The object initiating the

sequence of messages is a Reservation window.

aChain
HotelChain

object

h

window

aHotel
Hutel

Usetinterface

makeReservationQyoid 1 poayepecamation(vaid

X s ==
- message

A
N

activation bar

T

iteration

for each day] isRoom=available:hoolean

¥ condition
[isRoom]
=

aReservation
Reservation

creation Z-_ i

note \

|
S¢<— deletion [o |

——— lifeline —P|
| |

Ifa room is available for
each day ofthe stay, make
areservation and send a
confirmation,

aNotice
Confirmation

Figure: Sequence Diagram-1

Object Oriented System Design

Page: 2/74

The Reservation window sends a makeReservation () message to a HotelChain. The
HotelChain then sends a makeReservation () message to a Hotel. If the Hotel has

available rooms, then it makes a Reservation and a Confirmation.

Within a sequence diagram, on object is available in the box at the top of a dotted vertical
line. Each vertical dotted line is a lifeline, representing the time that an object exists.
Each arrow is a message call. An arrow goes from the sender to the top of the activation
bar of the message on the receiver's lifeline. The activation bar represents the duration of
execution of the message. Each message is labeled at minimum with the message name.

In our diagram, the Hotel issues a self call to determine if a room is available. If so, then
the Hotel creates a Reservation and a Confirmation. The asterisk on the self call means
iteration (to make sure there is available room for each day of the stay in the hotel). The

expression in square brackets, [|, is a condition.

The diagram has a clarifying note, which is text inside a dog-eared rectangle. Notes can

be put into any kind of UML diagram.

Another Example
- :\ Wisitor - Wisitor Home . Home
- PUMm User L Il Plhe

de-registration invoke()

FUMNM_SETURPPumDe-regsarg)

CALL_PROCEEDIMNG)

PUMNM_COMNMNECT(FumbDe-regsrod)

, de-registration response()

RELEASE()

REl FASE_COlMPL FETE()

Figure: Sequence Diagram-2

Guide lines for Drawing Sequence Diagrams

1. An actor that initiates the interaction is often shown on the left.

Object Oriented System Design Page: 3/74

2. The vertical dimension represents time.

3. A vertical line, called a lifeline, is attached to each object or actor.

4. The lifeline becomes a broad box, called an activation box during the live activation
period.

5. A message is represented as an arrow between activation boxes of the sender and
receiver.

E Object: Class j
O A sequence diagram is

An interaction diagram

aStudent. Sudent Semipa Course 3
that details how
——— =] operations are carried

out.
What messages are sent
ul and when.

Sequence diagrams are

orgamzed acc 01‘(1111_9 1o

Fee _SipbiyStats time

BnmiSnoE AS ent)

isSludeniEligible{aStudagt)

gedSemingrHistory()

seminartimiory

enrolimentStabs

e EEEmsases T e s e o]

b R e

Operations

Lifeline j

3.2 Collaboration diagrams

Collaboration Diagrams describe interactions among classes and associations. These
interactions are modeled as exchanges of messages between classes through their
associations. Collaboration diagrams are a type of interaction diagram. Collaboration
diagrams contain the following elements:

* Class roles, which represent roles that objects may play within the interaction.

* Association roles, which represent roles that links may play within the interaction.

* Message flows, which represent messages sent between objects via links. Links

transport or implement the delivery of the message.

3.3 State chart diagrams
Objects have behaviors and state. The state of an object depends on its current activity or
condition. A state chart diagram shows the possible states of the object and the transitions

that cause a change in state.

Object Oriented System Design Page: 4/74

UML state machine diagrams depict the various states that an object may be in and the
transitions between those states. In fact, in other modeling languages, it is common for
this type of a diagram to be called a state-transition diagram or even simply a state
diagram. A state represents a stage in the behavior pattern of an object, and like UML
activity diagrams it is possible to have initial states and final states. An initial state, also
called a creation state, is the one that an object is in when it is first created, whereas a
final state is one in which no transitions lead out of. A transition is a progression from
one state to another and will be triggered by an event that is either internal or external to

the object.

Top-level state machine diagram is shown below for seminar enrollment, teaching and
final exams for a specific subject. The arrows represent transitions, progressions from one

state to another.

classes
end

term
started

Enroliment
student dropped

[seminar size > 0]
[seminar size = 0]

-

Figure: State Chart Diagram-1

Following figure presents sub-states of enrollment state during seminar class registration.

Object Oriented System Design Page: 5/74

student enrolled
[seat available]/ !k

addStudent(Dpen For Enrgliment
open cancelled

o
=

Proposed Scheduled

aniry! logSiza()
\ closed
cancalled cancelied sludan enfolld
[no seal available] /
ddToWaitingList
a0CTONAINGLSYE | seat avalable
(Full E&BU 1o Enrollmant
seminar Spit| aneoll student ! tlosed iz
add TaWaitingListi); | entryl natifylnstructar()
sludent drapped cansiderspit|
o seal available] studentdropped pancslled
[seal availabla]

cancing anralFromWaitngList()

Figure: State Chart Diagram-2

3.4 Realizing Use Cases in Sequence Diagrams

Realizing use cases by means of sequence diagrams is an important part of our
analysis.

It ensures that we have an accurate and complete class diagram.

The sequence diagrams increase the completeness and understandability of our
analysis model.

The behavior is associated with the class the first time it is required, and then the
behavior is reused for every other use case that requires the behavior.

When assigning behaviors or responsibilities to a class while mapping a use case to
the analysis model, you must take special care to assign the responsibility to the
correct class.

The responsibility or behavior belongs to the class if it is something you would do to
the thing the class represents.

Example

* Suppose you were asked to read the first paragraph of three chapters of book.
First, you would need to know where to go to get the book. We might state that all
books we are referring to are available at the Fourth St. library. You might then
know to first go to the library, but the library has thousands of books. You might
next have to consult the card catalog to determine where the book is located and
then retrieve the book. Next, you might look at the book’s table of contents to
determine which pages concern you and then turn to those pages. We could
consider the library as the whole and the books as the part of the whole-part
relationship. The relationship between the book and the pages could also be

Object Oriented System Design Page: 6/74

viewed as a whole-part relationship. When we determined where to look and then
proceeded to find that point, we were navigating the whole-part relationship.

* Every time you find yourself navigating the whole-part relationship to find the
appropriate class, you will need to assign responsibilities to the classes you are
navigating to ensure that you can, in fact, find the appropriate class.

* Said another way, the navigating behavior must be a method on the class
representing the whole.

* It is not unusual that this requires returning to the class that represents the system
itself.

o Sl

]

% delsteOrdsfFarCustamer|)

. At | - Pointofsals | - Cuslomesr | | - Orger |
AL dalaeCrdarForCusicman | | dalataddar)

- delzie] | |

CuslomaT 3 ———— L
= -
"1

% oeletelrder|)

L

1 [y
o
1

] 1
-
Circher

&% kel

Figure: class diagram and sequence diagram for the class diagram

* Suppose the system receives a message from an actor requesting that you delete a
given order belonging to a given customer.

* The sequence diagram might look like as shown previously.

* The sequence diagram requires the system to navigate the whole-part
relationships to delete the order specified by the object of type ACTOR.

* The sequence of events begins when the object of type ACTOR requests that a
specific order be deleted for a specific customer.

* There is no way for the object of type ACTOR to call the delete method on the
object of the type ORDER because the object of type ACTOR does not have a
reference to the specific order.

» It is appropriate for the object of type ACTOR to have a reference to the object of
type POINTOFSALE.

» This follows because there is only one object of type POINTOFSALE and it can,
therefore, be referenced by name.

* The logical starting point for all interaction with the actor is the object of type
POINTOFSALE.

» The objects of type ACTOR can then traverse the whole-part relationships to
arrive at the specific object of type ORDER for which the action is intended.

Object Oriented System Design Page: 7/74

The responsibilities for navigating the whole-part relationship result in assigning

behaviors to the object of type POINTOFSALE and the object of type
CUSTOMER.

3.5 Logical Architecture and UML Package Diagrams

3.5.1 Logical Architecture and Layers

Logical architecture: the large-scale organization of software classes into packages,
subsystems, and layers.

“Logical” because no decisions about deployment are implied. (See Chap.
37.)

Layer: a very coarse-grained grouping of classes, packages, or subsystems that has
cohesive responsibility for a major aspect of the system.

3.5.2 Layered Architectures

* Typical layers in an OO system:
— User Interface

— Application Logic and Domain Objects
— Technical Services

* Application-independent, reusable across systems.
Relationships between layers:

Strict layered architecture: a layer only calls upon services of the layer
directly below it.

Relaxed layered architecture: a higher layer calls upon several lower
layers.

W] |

not the dava
Swing - ... | Swing libraries, but Wwehb

our G classes
basad on Swing

Dorrain

Sales

l

Taxes s

-

I
f
Technical Services &
—1 —1 e
Persistence Logging | RulesEngine

a’l’
-
-
o
=

Figure: Layers shown with UML package diagrams

Object Oriented System Design Page: 8/74

—| —|
Swing Wah ML | Bales
__________ - - -
. | ul
Ul :Swing UL Weh | an
7 7 I ——
\\\ /r/) l — r —
R — ¥ Swing Weh
"& Domain Sales | T 7 _D' -
l . _ omain
|

"=~ Sales —|—653

Figure: Various UML notations for packages nesting

3.5.3 Design with Layers
* Organize the large-scale logical structure of a system into discrete layers of
distinct, related responsibilities.

— Cohesive separation of concerns.
— Lower layers are general services.
— Higher layers are more application-specific.

* (Collaboration and coupling is from higher to lower layers.
— Lower-to-higher layer coupling is avoided.

Object Oriented System Design Page: 9/74

GUIwhdows
Tefa s Ul
speech hte mace @A Presentation, Vew)
HTRL, XRL, X5LT, 5P Javaserpt, ...
Tore
. app

bandks presertation Byerequests . mpecifle
:eﬂsr“:r:;ﬁmte AppIlE atlon I
pEaE R BEA arktow, Process, |
Whdowipage tavstons MedBton, App Contile n E |
consolkation tavstom ation ot dkparat L
dab tarprsetaton il

v |
bandles appleation lye rreqrests il
Mmpkmertation otdomah mes —TGeomam ¥
domah sewlces POS,averoy) BEABVEhess,

-zemkes may be vzed by [1stone
appleation, battie s b ako tie possibllty
ot m v-app leatlon se wices

Appllcation Lagle, Maode &

Eutlna o Infrastruc furs
(B KA Low-lewe [Bvsless Semkes)

Very general bw-kuel bizliess se mices
el hmavy bvshiess domahs
CumeneyCon vers

—,——
e Btvely b b-Bueltecivkalie mices Technleal Sarvices
and TFEIII'I eWorks . (KA Techokal ifrastnctore,
Perslseace, Secinl Hlgh-Buel TechrkalSe nkes)

bw-kueltechykbalee mices , vtk s, ’
and frameworks

daie sfwciwres hreads ma,
file, DB, and e dork VO

Faundation
BES Cor Semkes, baie Semkes,
Low-levelTechr alSemie siltrastnctogs

wld b lmplles range ofappllcablilly

T
L

Figure: Common layers in an IS logical architecture

3.5.4 Benefits of a Layered Architecture
* Separation of concerns:

E.g., Ul objects should not do application logic (a window object should not
calculate taxes) nor should a domain layer object create windows or capture mouse
events.

— Reduced coupling and dependencies.

— Improved cohesion.

— Increased potential for reuse.

— Increased clarity.
— Related complexity is encapsulated and decomposable.
— Some layers can be replaced with new implementations.
— Lower layers contain reusable functions.
— Some layers can be distributed.

Object Oriented System Design Page: 10/74

— Especially Domain and Technical Services.
— Development by teams is aided by logical segmentation.

Designing the Domain Layer
How do we design the application logic with objects?

* Create software objects with names and information similar to the real-world

domain.
* Assign application logic responsibilities to these domain objects.
— E.g., aSale object is able to calculate its total.

The application logic layer is more accurately called a domain layer when designed this
way.

P Domen Model
Stakeholder's viewwof the noteworthy concepts in the domain.

. . h Sde
& Payment in the Domain Model Paymert 1 Paysfor 1
iz aconcept, bt & Payment in k date
the Design Model is a software I amoLnt time
cless. They ee not the same A
thing, but the former ingsiedthe g R
naming and defnition of the / '2?:;383 i
latter. s{n d
This reduces the representational E names in
gap. L

i Sale
Thisiz one ofthe bigideasin 13 Payment
ohjec technology. i 1 p i 1 | date: Date
& amount. Money ay=-Tor statTime: Time
getBalance Money getTatal(T Money

Do ain laver of the srchitecturs in the UP Design Mol
The chied-ofiented developer hastakeninspirgtion from the real wodd domain
in creating software dasses.

Therefore, the representational gep between how stek eholders conceive the
domain, and its representation in softwere, has been lovwerad.

Figure: Domain Model Related to Domain Layer

Object Oriented System Design Page: 11/74

Vertical Layers

Daomain
POS Invertory Tax
Technical Services
——— ——1 — |
Persistence Security Logging
- Horizontal Partitions >

Figure: Layers vs. Partitions

Warse

mixes logical and deployment views

Better
a logical wiew

o - a logical representation
—— o maEn(=] of the need for data ar
o . services related to these
emain(=] POS Inventony e <o subdomains, abstracting
| e | implementation
— - e deciions such a= a
TSEd"'_'"'33| T ya database.
bt Technica Sa’\.-ioesl__,-"r -
= -
—— — g —— = ——
; . M aming and ek
Foundation
Perktence Directory Services AppFramework
£ <companents |
—————
P Mowell
W LD AP 1 Foundation

| LWL motztion: A UML component, or replaceable, modular part ofthe physical system H

T r---{ L motstion: A physical database inthe UML H

Figure: Don’t mix logical and deployment views

3.5.5 The Model-View Separation Principle
* Model: the domain layer of objects.
* View: user interface (UI) objects.
* Model objects should not have direct knowledge of view objects.

Do not connect or couple non-UI objects directly to UI objects.
*+ E.g., don’t let a Sale object have a reference to a Java Swing
JFrame window object.
Do not put application logic in a UI object.

Object Oriented System Design

Page: 12/74

X

: Cashier

makeNansSale) >

» UI objects should receive Ul events and delegate requests for
application logic to non-UI objects.

System

3.5.6 The Observer Pattern

-

Frame

makeMewmSalel)
enterltem()

makeMew Salel)

enterltem()
Q
D' orm ain | endSale) .
Register

| the system operations handled by the system in an S50 represent the
operation calls onthe Application or Domain layer from the Ul layer

Figure: Messages from Ul layer to domain layer

ul | —
Swing makeMewsalel)
enterlitemn()
FrocessSale endSalel)

: Cashier

* If model (domain) objects do not have direct knowledge of view (UI) objects,
how can a Register or Sale object get a window to refresh its display when a total
changes?

* The Observer pattern (p. 463) allows domain objects to send messages to Ul
objects viewed only in terms of an interface.

E.g., known not as concrete window class, but as implementation of

PropertyListener interface.

* Allows replacement of one view by another.

3.6 Component Diagram

A component diagram shows the dependencies among software components, including

source code components, binary code components, and executable components. A

software module may be represented as a component type. Some components exist at

compile time, some exist at link time, some exist at run time, and some exist at more than

one time. A compile-only component is one that is only meaningful at compile time. The

run-time component in this case would be an executable program. A component diagram

Object Oriented System Design

Page: 13/74

has only a type form, not an instance form. To show component instances, use a

deployment diagram (possibly a degenerate one without nodes).

; Scheduler

Plannear

Gul

==
=

3.7 Deployment Diagram

)
A

e

reservations

Deployment diagrams show the configuration of run-time processing elements and the

software components, processes, and objects that live on them. Software component

instances represent run-time manifestations of code units. Components that do not exist

as run-time entities (because they have been compiled away) do not appear on these

diagrams, they should be shown on component diagrams.

AdminSsrver HosthMachins

]
|
i

Schedular

wdatabases
T mestingsDE

“h ressrvations

Jos'shachine PC

—

Flanner

Object Oriented System Design

Page: 14/74

3.8 Collaboration diagram

Collaboration Diagrams describe interactions among classes and associations. These
interactions are modeled as exchanges of messages between classes through their
associations. Collaboration diagrams are a type of interaction diagram. Collaboration
diagrams contain the following elements:

* Class roles, which represent roles that objects may play within the interaction.

* Association roles, which represent roles that links may play within the interaction.

» Message flows, which represent messages sent between objects via links. Links

transport or implement the delivery of the message.

3.9 Design Patterns

3.9.1 Reusing object oriented design

Software designers are in a similar position to architects and civil engineers, particularly
those concerned with the design of large heterogeneous constructions, such as towns and
industrial plants. It therefore seems natural that we should turn to these subjects for ideas
about how to attack the design problem.

Subsystems created by the composition of objects do not conform to any accepted notion
of structure and are very hard to characterize, though they do determine subsystems that
exhibit reusable regularities of interface behavior. The term pattern is used to denote
reusable regularities of behavior exhibited by interactive subsystems created by the

composition of interaction.

3.9.2 What is a design pattern?

They originate from the work of Christopher Alexander, a building architect in the
1970%s. Alexander”s idea was to improve the quality of the buildings of the time by
utilising proven ,patterns” of good architectural design. ,,Each pattern describes a
problem which occurs over and over again in our environment, and then describes the

core of the solution to that problem.*

Object Oriented System Design Page: 15/74

A design pattern is defined as ,,a description of communicating objects and classes that

are customized to solve a general design problem in a particular context™.

e Patterns capture good design principles and communicate them to others.

e Design patterns represent the first legitimate attempt at design reusability.

3.9.3 Design Patterns: Essentials
e Patterns are found through trial and error and by observation.

e In general a design pattern has four essential elements:
e The pattern name

e The problem the pattern is used to solve

e The solution or template for implementing the pattern

e The consequences or results of applying the pattern.

3.9.4 Design Patterns: Characteristics

Smart

e Design patterns are elegant solutions that would not necessarily be apparent to
designer without significant experience

Generic

e Patterns are normally generic for a specific problem (a bit like generic containers).

e Design patterns are not normally dependent on a specific system type, programming
language, or application domain.

Well-proven

e Design patterns have been identified from real, object-oriented systems. They have
not just been thought up, they have been successfully used and tested in several
systems.

Simple

e Design patterns usually only consist of a small number of classes, so they are quite

small. Combining patterns allows the building of more complex systems.

Object Oriented System Design Page: 16/74

Reusable

e Patterns are well documented so they are easy to reuse. They are generic so they can
be used in a variety of different types of system. It is worth noting that the reuse is at
the design level, not at the code level; the classes are not in libraries.

Object Oriented

e Design patterns conform to the usual object-oriented concepts of classes, objects,
inheritance and polymorphism.

e The most widely known work on design patterns is that of Gamma, Helm, Johnson
and Vlissides. ,,The gang of four” as they are commonly referred to. Their book
,Design Patterns: Elements of Reusable Object-Oriented Software™ was published in
1994. It contains a description of the concepts of patterns, plus a catalog of 23 design

patterns with their full documentation.

3.9.5 Types of Design Patterns

Creational Patterns: - All of the creational patterns deal with the best way to create
instances of classes. Creational patterns separate the operation of an application from
how its objects are created. This is important because your program should not depend on
how objects are created and arranged. In Java, of course, the simplest way to create an

instance of an object is by using the new operator.
Fred = new Fred(); //instance of Fred class

However, this really amounts to hard coding how you create the object within your
program. In many cases, the exact nature of the object that is created could vary with the
needs of the program from time to time and abstracting the creation process into a special

"creator" class can make your program more flexible and general.

Creational patterns abstract the object instantiation process. They hide how objects are
created and help make the overall system independent of how its objects are created and

composed. 1 Class creational patterns focus on the use of inheritance to decide the object

Object Oriented System Design Page: 17/74

to be instantiated Patterns become important as systems evolve to depend more on object
composition than class inheritance. Thus creating objects with particular behaviors
requires more than simply instantiating a class.

As an example we consider the creational pattern, Singleton, which can be used to ensure
that only one instance of a class is created. Singleton pattern offers several advantages
but also has disadvantages

Advantages

It provides controlled access to the sole object instance as the singleton encapsulates the
instance.

The namespace is not unnecessarily extended with global variables.

The singleton class may be sub classed. At system start up user selected options may
determine which of the subclasses instantiated is when the singleton class is first
accessed.

A variation of this pattern can be used to create a specified number of instances if
required.

Disadvantages

Using the pattern introduces some additional message passing. To access the singleton
instance, the class scope operation getlnstance() has to be accessed first rather than
accessing the instance directly.

The pattern limits the flexibility of the application.

The singleton pattern is quite well known and developers are tempted to use it in

circumstances that are inappropriate. Patterns must be used with care.

Structural Patterns: Structural patterns describe how classes and objects can be
combined to form larger structures. Structural patterns offer effective ways of using
object oriented concepts such as inheritance, aggregation and composition to satisfy
particular requirements. The difference between class patterns and object patterns is that
class patterns describe how inheritance can be used to provide more useful program

interfaces. Object patterns, on the other hand, describe how objects can be composed into

Object Oriented System Design Page: 18/74

larger structures using object composition, or the inclusion of objects within other
objects.

As an example we consider the structural pattern, composite pattern

Behavioural Patterns: Behavioral patterns are those patterns that are most specifically
concerned with communication between objects. This pattern addresses the problems that
arise when responsibilities are assigned to classes and in designing algorithms.
Behavioural patterns not only suggest particular static relationships between objects and
classes but also describe how the objects communicate. Behavioural patterns may use
inheritance structures to spread behaviour across the subclasses or they may use
aggregation and composition to build complex behaviour from simpler components. The

state pattern uses both of these techniques

Object Oriented System Design Page: 19/74

Unit-4
Object Oriented System Design

4.1 Design Issues
Q UML as a Model Can’t Work in Isolation
QO Large Scale System Design/Development Involves

U Team-Oriented Efforts
U Software Architectural Design

O System Design, Implementation, Integration

QO The Unified Process by Rational is

U TIterative and Incremental
U Use Case Driven

U Architecture-Centric

4.2 Unified Modeling Language

The Unified Modeling Language (or UML) was an attempt to bring together the best of the nota-
tions currently in use in the early 1990s. It was developed by Rational Corp., originally by Grady
Booch and James Rumbaugh. In the early days of UML (and in particular when I first came across
it) it was part of the Unified Method, and indeed the first document I read about the UML was
actually entitled “Unified Method 0.8". The intention was to produce not just a notation but a
best practice method as well. However, producing a notation is one thing; producing a design
method is quite another. Therefore the Unified Method developed into the Unified Modeling
Language (UML), which focuses on the notation and is not a design method. Ivar Jacobson later
joined Rational and became the third member of the triad that developed the UML.

The UML attempts to be a unifying notation that incorporates the best of a number of
other notations as well as current best practice in one generally applicable notation. That is,
you should equally be able to apply the UML to a real-time system, a payroll system or a
Web browser. Each project might make more or less use of different parts of the UML {and
indeed some parts may be ignored by different projects). However, the UML should actas a
common vocabulary for all object-oriented design projects. Possibly surprisingly, this is
what has begun to happen. Almost all (if not all} object-oriented design tools now support

the UML {often in addition to their own notation), and many books have been written on
how to apply the UML in different situations (in some cases with additions being made).

One of the most significant aspects of the UML is that it possesses a meta-model. Thisisa
model which explicitly describes the UML (in fact this meta-model is written in UML!) thus
allowing different tool vendors to implement the UML with the same meaning. It also
allows different tool vendors to exchange models if they wish. It also provides a concrete
basis upon which others can assess, review and respond to the UML. This was a very signifi-
cant development when the UML was first released, and provided a very firm foundation
for the UML as the notation of choice,

Object Oriented System Design

Page: 20/74

4.3 History of the UML

The UML was not developed overnight (see Figure 3.1).1t has gone through an extensive develop-
ment process which started in the mid-1990s. As stated earlier, my first encounter with what was
to become the UML was when it was first documented as part of the Unified Method (release 0.8)
in October 1995. At this point in time its heaviest influences were OMT (where [was coming
from) and the Booch method. This was primarily because the two key architects at this time were
Rumbaugh and Booch. However, OMT has had many influences and has taken many elements
from other design methods (see Figure 3.2).

At this time the Unified Method was an impressive exercise, as it had only been under
development for the best part of a year. However, things did not stand still, and by the
middle of the next year (1996) version 0.9 was released (and version 0.91 three months
later). The name had at this point changed and the release was now called the Unified

Published September 2001 UML 1.4
RTF repart 4/939 UML 1.3

OMG revision 9/97, adoption 11/97 UML 1.1 OMG feedback

I_l

OMG submission 1/97 UML 1.0
1
| l
6/96 &9/96 UML 0.9 & 0.91 | UML patterners'input
1
: :
0OPSLA 10/95 Unified Method 0.8 || | Tgemreriocs

Start 1/95 Booch Method OMT

Figure: A potted history of the UML

Object Oriented System Design Page: 21/74

Harel
Statecharts

Meyer
Befare and after Gamma et al.
conditions \ l / Frameworks and Pattermns
I;u;ian y
Booch Operation criptions an
Baachﬁdi'rhud [ff"{ message numbering
T UNHIEE =
umbalgn | o = mbley
OMT MODELING 'J'-.', #——0 Singleton classes and
| igh-level view
LANGUAGE §
lacobson |_—%
O0se Wirfs-Brock
He!pan:rbf.fmﬂ
ShIaEI—MEIIDr DdEII
Object life cycles Clazsification

Figure: Influences on the UML

Modeling Language. This release focused on the notation and mostly ignored the process.
However, much had happened during this time. Not only had many people worldwide
commented on the 0.8 release (as it was freely available for download from Rational’s Web
site — http: //www.rational .com/), but the influence of Ivar Jacobson was now being felt.
Jacobson had been one of the key architects of the Objectory method, which was most
notable for its use of use cases. He had joined Booch and Rumbaugh at Rational at just
about the same time as the 0.8 version was released. In UML 0.9 use cases were seen for the
first time.

Other partners were now becoming involved in the UML development process, ensuring
that a wide variety of backgrounds, expertise and experience was brought to bear. Compa-
nies such as IBM, Hewlett-Packard and Microsoft all contributed. Then, at the beginning of
1997, the UML 1.0 standard was presented to the OMG for acceptance as an OMG standard.
Version 1.1 of the UML was promulgated as a standard by the OMG towards the end of 1997.

Development of the UML has not stood still, however, although it is now under the
control of the OMG. Rather it has continued to develop, and we are now at version 1.4 of the
UML (September 2001). At the time of writing there were at least three initiatives looking at
developments to the UML, including UML 1.4 with Action Semantics, which adds to UML
the syntax and semantics of executable actions and procedures, including their run-time
semantics. These semantics are contained within one package, labelled Actions, which
defines the various kinds of actions that may compose a procedure. In addition the RTF has
been published for UML 1.4.1.

UML is now almost universal as the language used to describe object-oriented models,
Indeed, incorporating UML as an OMG standard has ensured that many organizations have
adopted it as a non-proprietary standard and that the standard has maintained pace with
current developments in computer science - the Internet and Java in particular,

Object Oriented System Design Page: 22/74

Clazs
diagrams

Use caze
diagrams |

Object

\\\-..h diagrams
Sequence /

ciagrany h Component
=~ diagrams
Maodel
Collabaration // !
diagrams - .| Deplayment
\ diagrams
Statecharts
diagrams Activity
diagrams

Figure 3.3 Relationship between diagrams and models.

® Statecharts. A statechart, or state diagram, illustrates the states an object can be in and the
transitions which move the object between states.

® Component diagrams. These diagrams are used to illustrate the physical structure of the
code in terms of the source code. In Java this means the class files and Java Archive Files
(JAR),as well as items such as Web Archive Files (WAR) and Enterprise Archive Files (EAR)
in the Java 2 Enterprise Edition architecture.

® Deployment diagrams. Deployment diagrams illustrate the physical architecture of the sys-
tem in terms of processes, networks and the location of components.

4.4 The Unified Approach to Design

The Unified Process isa design framework which guides the tasks, people and products of the de-
sign process. It is a framework because it provides the inputs and outputs of each activity, but

Figure 3.4 Key building blocks of the Unified Process.

Object Oriented System Design Page: 23/74

does not restrict how each activity must be performed. Different activities can be used in differ-
ent situations,some being left out, others being replaced or augmented (this is discussed in more
detail later in this book). Why then is the Unified Process call a process and not the Unified
Framework? It is called a process because its primary aim is to define:

Who is doing what.

When they do it.

How to reach a certain goal (i.e. each activity).
The inputs and outputs of each activity.

Itis thus an engineered process. In fact, it is comprised of a number of different hierarchical ele-
ments (see Figure 3.4).

The Unified Process actually comprises low-level activities (such as finding classes),
which are combined together into disciplines (formerly known as workflows) which
describe how one activity feeds into another). These disciplines are organized into itera-
tions. Each iteration identifies some aspect of the system to be considered. How this is done
is considered in more detail later. [terations themselves are organized into phases. Phases
focus on different aspects of the design process, for example requirements, analysis, design
and implementation. In turn phases can be grouped into cycles. Cycles focus on the genera-
tion of successive releases of a system (for example, version 1.0, version 1.1 etc.).

There are four key elements to the philosophy behind the Unified Process. These four elements:

® are iterative and incremental
® are use case-driven

® are architecture-centric

® acknowledge risk

Iterative and Incremental

The Unified Process is iterative and incremental, as it does not try to complete the whole design
task in one go. One of the features of the waterfall model of software engineering used by many
design methods (see Figure 3.5) is that it primarily assumes that you will complete the require-

Requirements

L]

'-.I,.;.;.. DE‘SIQI’I

i

| i

%------------'f.------- Implementation
i '

! : T

: : :

s masnanun - 1.

----------------------------- Test

Figure 3.5 The waterfall model.

Object Oriented System Design

Page: 24/74

ments analysis before you start the design phase. In turn, you will complete the design phase
before you start the implementation phase and so on. It does accept that there may be some feed-
back of information from one phase to any preceding phases and that this feedback may have an
impact on the products of the preceding phases. However, this is a secondary issue and the
assumption is that you will be able to complete the vast majority of one phase before ever consid-
ering the next phase. This may be true if this is the fifth or sixth system you have built in the same
domain for the same type of application. It is unlikely to be the case with your first application in
a new domain (such as your first e-commerce project!).

In contrast to the waterfall model, the Unified Process has an iterative and incremental
model. That is, the design process is based on iterations which either address different
aspects of the design process or move the design forward in some way (this is the incre-
mental aspect of the model). This does not mean that the Unified Process is a process based
on rapid prototyping. Any prototypes that are developed in the Unified Process are used to
explore some aspect of the design. This could be to verify some architectural issue for
which the design options are similar. Indeed, the use of an iterative and incremental
approach in the Unified Process requires more planning (rather than less planning)
compared with approaches such as those based on the waterfall model.

Essentially the following holds with the iterative approach in the Unified Process:

You plan a little.

You specify, design and implement a little.
You integrate, test and run.

You obtain feedback before next iteration.

The end result is that you incrementally produce the system being designed. While you do this you
explicitly identify the risks to your design/system up front and deal with them early on (see later).
Notice that this does not mean that you are hacking the system together; nor are you carrying out
some form of rapid prototyping. However, it does mean that a great deal of planning is required, both
initially and as the design develops.

Use Case-driven

The Unified Process is also use case-driven. Remember from earlier that use cases help to identify
who uses the system and what they need to do with the system (i.e. the top-level functionality).

Use case model
o
] D [——tested in
Analysis fidentiﬁes Al B, m,,__\“ Test
i : f/ \1\ implernented S i
specifies

i by
_..--F""‘EF inputs 4 outputs real:l:ad h"""-.
Anabysis use b o
\\ Source

case realizations

Design wse code
case Design
realizations Subsystern micdel
model

Figure 3.6 The rale of use cases.

Object Oriented System Design Page: 25/74

Thus use cases help identify the primary requirements of the system. One problem with many
traditional approaches is that once the requirements have been identified there is no traceability
of those requirements through the design to the implementation. Instead, designers (and
possibly implementers) must refer back implicitly to the requirements specification and make
sure that they have done what is required of them. This is then verified by testing (by which time it
is often too late to make any major modifications if the functionality is either wrong or missing}.

In the Unified Process use cases are used to ensure that the evolving design is always rele-
vant to what the user required. Indeed, the use cases act as the one consistent thread
throughout the whole of the development process, as illustrated in Figure 3.6. For example, at
the beginning of the design phase one of the two primary inputs to this phase is the use case
model. Then, explicitly within the design model, there are use case realizations which illus-
trate how each use case is supported by the design. Any use case which does not have a use
case realization is not currently supported by the design (in turn, any design elements which
do notin some way partake in a use case realization do not support the required functionality
of the system!).

To summarize the role of use cases they:

identify the users of the system and their requirements

aid in the creation and validation of the system’s architecture
help produce the definition of test cases and procedures
direct the planning of iterations

drive the creation of user documentation

direct the deployment of the system

synchronize the content of different models

drive traceability throughout models

Architecture-Centric

One problem with having an iterative and incremental approach is that while one group may be
working on part of the implementation another gronp may be working on part of the design. To
ensure that all the various parts fit together there needs to be something. That something is an

@m

______,_.-""'""—”_ Architecture

Figure 3.7 The development of the architecture.

architecture. An architecture is the skeleton on which the muscles (functionality) and skin (the
user interface) of the system will be hung. A good architecture will be resilient to change and to
the evolving design. The Unified Process explicitly acknowledges the need for this architecture
by being architecture-centric, It describes how you identify what should be part of the architec-
ture and how you go about designing and implementing the architecture (Figure 3.7). The
remainder of the Unified Process then refers back to that architecture.

Obviously, the generation of this architecture is both critical and very hard. Therefore
the Unified Process prescribes the successive refinement of the executable architecture,
thereby attempting to ensure that the architecture remains relevant.

Object Oriented System Design

Page: 26/74

Acknowledges Risk

Finally, the Unified Process explicitly acknowledges the risk inherent in software design and
development. It does this by highlighting unknown aspects in the system being designed and
other areas of concern. These areas are then targeted as either being critical to the system and
therefore part of the architecture, or areas of risk which need to be addressed early on in the
design process {when there is more time) rather than later on {when time tends to be short). Thus
it tries to force the riskiest aspects of the system to be designed and implemented early on,hence
ensuring that the risk in the system is addressed and managed in a professional manner. Note
that it is typically the areas of a design which we do not really understand which end up having
the biggest impact on an architecture or the final system. This is often because we do not realize
the impact that such areas will have and therefore do not take into account how to deal with their
requirements. This is why late on in projects, when such areas are addressed, the system either
needs to leave out that functionality or reguires major modifications to incorporate the
functionality.

4.5 Life Cycle Phase of Unified Process

The Unified Process is composed of four distinct phases. These four phases (presented in Figure
3.8) focus on different aspects of the design process. The four phases are Inception, Elaboration,
Construction and Transition.

Figure 3.8 The four phases of the Unified Process.

The four phases and their roles are outlined below:

® Inception. This phase defines the scope of the project and develops the business case for the
system. It also establishes the feasibility of the system to be built. Various prototypes may be
developed during this phase to ensure the feasibility of the proposal. Note that we do not fo-
cus on the development of the business case in this book: it is assumed that the system to be
designed is required and that a business case has already been made.

® Elaboration. This phase captures the functional requirements of the system. It should also
specify any non-functional requirements to ensure that they are taken into account. The
other primary task for this phase is the creation of the architecture to be used throughout
the remainder of the Unified Process.

® Construction. This phase concentrates on completing the analysis of the system, perform-
ing the majority of the design and the implementation of the system. That is, it essentially
builds the product.

® Transition, The transition phase moves the system into the user’s environment. This in-
volves activities such as deploying the system and maintaining it.

Each phase has a set of major milestones that are used to judge the progress of the overall
Unified Process (of course, with each phase there are numerous minor milestones to be
achieved). The primary milestones (or products) of the four phases are illustrated in Figure 3.9.

A milestone is the culmination of a phase and comprises a set of artefacts (such as specific
models) which are the product of the disciplines (and thus activities) in that phase. The primary
milestones for each phase are:

Object Oriented System Design

Page: 27/74

Nolile

™

!

okt
Inception) F

Vision

1l
m-

Baseline architectu

o N

Final release

Figure 3.9 The major deliverables of each phase.

* [nception. The output of this phase is the vision for the system. This includes a very simpli-
fied use case model (to identify what the primary functionality of the system is) and a very

tentative architecture, and the most important or significant risks are identified and the
elaboration phase is planned.

® Elaboration. The primary output of this phase is the architecture, along with a detailed use
case model and a set of plans for the construction phase.

® Construction. The end result of this phase is the implemented product which includes the soft-
ware as well as the design and associated models. The product may not be without defects, as
some further work has yet to be completed in the transition phase.

* Transition. The transition phase is the last phase of a cycle. The major milestone met by this
phase is the final production-quality release of the system.

4.6 Applying the Unified Process

When it comes to applying the Unified Process to a real-world project, you should notice that it is
a framework (see Figure 3.14). This means that there is no universal process which will always be
applicable in its entirety. Instead, the Unified Process is designed for flexibility and extensibility.
It allows a variety of life cycle strategies and also allows the selection of what artefacts should be
produced. It defines what activities should be performed when and which workers should

Warkflows Activities

Find actors and use cases, prioritize use cases, detail use

Reifningatd "| cases, prototype wser interface, structure the use case maodel

; | Architectural analysis, analyse use cases, explore
Analysis
classes, find packages

Architectural design, trace use cases, refine and design

Lesn classes, design packages

Architectural implementation, implement classes and interfaces,
implement subsystemns, perform unit testing, integrate systems

Implementation

Plan and design tests, implement tests, perform

Test . .
integration and system tests, evaluate tests

Figure 3.13 Disciplines are comprised of activities,

Object Oriented System Design Page: 28/74

i\@ L)

Figure 3.14 The Unified Process is a framewaork.

perform those activities. Thus it is possible to leave out those elements that don't fit the current
project. For example, you might leave out deployment diagrams if you are only deploying on one
processor, or if you are working with a batch processing oriented system you may decide to
ignore some of the dynamic elements produced, such as statechart diagrams.

In turn, you can add in additional elements if they are required. For example, you may
decide to incorporate some real-time extensions into the UML, and some activities to
support them. You might decide to incorporate a security view of your system. You might
also feel the need to incorporate additional processes. For example, you might incorporate
additional activities to help identify an initial set of classes, attributes and relationships. In
fact, you may even decide to leave out whole phases, iterations and disciplines as appro-
priate: for example, a simple system may not need an explicit analysis model!

4.7 Analysis model Partitioning for the design

Software design deals with transforming the customer requirements, as described in the
SRS document, into a form (a set of documents) that is suitable for implementation in a
programming language. A good software design is seldom arrived by using a single step
procedure but rather through several iterations through a series of steps. Design activities
can be broadly classified into two important parts: Preliminary (high-level) design and
detailed design. The meaning and scope of two design activities (i.e. high level and
detailed design) tend to vary considerably from one methodology to another. High-level
design means identification of different modules and the control relationships among
them and the definition of the interfaces among these modules. The outcome of high-
level design is called the program structure or software architecture. Many different types
of notations have been used to represent a high-level design. A popular way is to use a
tree-like diagram called the structure chart to represent the control hierarchy in a high-

level design. However, other notations such as Jackson diagram or

Object Oriented System Design Page: 29/74

Analvei . Problem)
Analvsis
l 1
Design - .
l"’ Models)
Development <
I
. Solution)
Testing o

Figure: Analysis and design view
Warnier-Orr diagram can also be used. During detailed design, the data structure and the

algorithms of the different modules are designed.

Implementation Behavior
Environment A
(Language)
>
Information
Presentation

Figure: dimensions of analysis and design
The analysis model is refined and formalized to get a design model. During design
modeling, we try to adapt to the actual implementation environment. In design space, yet
another new dimension has been added to the analysis space to include the
implementation environment. This is show in figure above. This means that we want to
adopt our analysis model to fit in the implementation model at the same time as we refine

it.

Object Oriented System Design Page: 30/74

relationship
diagram

Data flow coponet

, level design
diagram
Inferface
design

Architectural
design

State-transition
diagram

Date
design

The analysis model The design model
Figure: Component of analysis model and its mapping to the design model.

Map the information from the analysis model to the design representations - data design,
architectural design, interface design, procedural design.

A. The design process should not suffer from tunnel vision

A good designer should consider alternative approaches, judging each based on the
requirements of the problem, the resources available to do the job.

B. The design should be traceable to the analysis model

Because a single element of the design model often traces to multiple requirements, it is
necessary to have a means for tracking how requirements have been satisfied by the
design model.

C. The design should minimize the intellectual distance between the software and the
problem as it exists in the real world.

That is, the structure of the software design should(whenever possible) mimic the
structure of the problem domain.

D. The design should exhibit uniformity and integration

Object Oriented System Design Page: 31/74

A design is uniform if it appears that one person developed the entire thing. Rules of style
and format should be defined for a design team before design work begins. A design is
integrated if care is taken in defining interfaces between design components.

E. Design is not coding, coding is not design

Even when detailed procedural designs are created for program components, the level of
abstraction of the design model is higher than source code. The only design decisions
made at the coding level address the small implementation details that enable the
procedural design to be coded.

F. The design should be assessed for quality

A variety of design concepts and design measures are available to assist the designer in
assessing quality.

G. The design should be reviewed to minimize conceptual errors

There is sometimes a tendency to focus on minutiae when the design is reviewed, missing
the forest for the trees. A design team should ensure that major conceptual elements of
the design (omissions, ambiguity, and inconsistency) have been addressed before
worrying about the syntax of the design model.

In the construction process, we construct the system using both the analysis model and
requirements model. We design and implement the system. Firstly, a design model is
made where each object will be fully specified. This model will then form an input data
for the rest process.

H. When to do this transition?

The transition from the analysis model to the design model should be made when the
Consequences of the implementation environment start to show. This is with adaptation
of DBMS distributed environment, real-time adaptations etc. then it is fine to be quite
formal in the analysis model.

But if these circumstances will strongly affect the system structure, then the transition
should be made quite early. The goal is not to redo any work in a later phase that has
done in an earlier phase. We try to keep an ideal analysis model of a system during the

entire system life cycle.

Object Oriented System Design Page: 32/74

A design model is a Specialization of the analysis model for a specific implementation
environment [1]. Such changes are then easily incorporated because it is the same

analysis model that will form should not affect the analysis model as we do not want

changes due to design decisions to be illustrated in the analysis model.

High

Analysis model

-] Class diaprams Usa cages — fext Class ddagrams Baquirenmsenis
= Analyses packages Use-case diagranks Aunalyses packages Constramis
= CRC Model 3 CRC Model Lterogesalility
E Collaboration diagrams Swini lape daagram Collaboration diagrams Targers and
é Diata flosy ds I Collaboration deagrams Data flow diagrams configusation
H] Control-flos State diagrams Contral-flow diagrams
= -~ | _ Processdng nal Sequence dagrams Processulg narralives
= il T S State diagrams
; ——— Sequence diagrams
= e ———
- Diesign clas! B i —_—
realizations T S —
Subsysiens Techadcal interface Congonent dagramns T
Collaboranon design Design classes Dz class realizalion
dhapramns Mavigatiod design Aty diaprams Snbeysrems
GUT desagn Sequence diagrams Collaboratien
Design model
Component diagroms
Refinement to: Refirenans o Design classes
Design ¢lass Compoient dagrams Activary diagrams
realizations Dresdgn claszes Sequence diagrans
Subaysiems Activiry diagraims
Collaboraton Sequence diagrans
Low Diagrams Deploynwnt diagrams
Architecturs Interface Component-kvel Deployment-level
eleinents elements elemnents elenints

Process dimension

1. When Changes should be made?

If a change of the design model comes from a logical change in the system, then such

changes should also be made in the analysis model.

We use a concept of block now to describe the intention of how the code should be
produced. The blocks are the design objects. One block normally tries to implement
should not affect the analysis model as we do not want changes due to design decisions to

be illustrated in the analysis model.

Object Oriented System Design Page: 33/74

4.8 Object diagrams

Object diagrams show instances instead of classes. They are useful for explaining small

pieces with complicated relationships, especially recursive relationships.

This small class diagram shows that a University Department can contain lots of other

Departments.

The object diagram below instantiates the class diagram, replacing it by a concrete

example.
instance name — _— class name
~a o~
mathStat:Department
math:Department
statistics:Department
appliedMath:Department mathEd:Department

Each rectangle in the object diagram corresponds to a single instance. Instance names are
underlined in UML diagrams. Class or instance names may be omitted from object

diagrams as long as the diagram meaning is still clear.

A class contains a class name, properties and functions. An object shows the class name it is
instantiated from preceded by a colon (:), then optionally preceded by the object name. The
class in a class diagram displays properties and functions, whereas the object in an object
diagram shows only properties, along with their values at the moment of interest to the
modeller or viewer. It uses the similar notation as the class diagram. Although less important

from a system documentation point of view, object diagrams are handy for documenting a

Object Oriented System Design Page: 34/74

current state of a system. This would include the current values of all documented attributes

as shown in the figure

Class Object
Company —_— U A HAL Company o |
noDEmployees: int noOfEmplayees = 600
Fossible ohject 4

Marme Attribute with — Ohject class
vallle

4.9 State chart diagrams

Objects have behaviors and state. The state of an object depends on its current activity or
condition. A state chart diagram shows the possible states of the object and the transitions

that cause a change in state.

UML state machine diagrams depict the various states that an object may be in and the
transitions between those states. In fact, in other modeling languages, it is common for
this type of a diagram to be called a state-transition diagram or even simply a state
diagram. A state represents a stage in the behavior pattern of an object, and like UML
activity diagrams it is possible to have initial states and final states. An initial state, also
called a creation state, is the one that an object is in when it is first created, whereas a
final state is one in which no transitions lead out of. A transition is a progression from
one state to another and will be triggered by an event that is either internal or external to

the object.

Top-level state machine diagram is shown below for seminar enrollment, teaching and
final exams for a specific subject. The arrows represent transitions, progressions from one

state to another.

Object Oriented System Design Page: 35/74

term classes
started

Enroliment
student dropped

[seminar size > 0]
[seminar size = 0]

-

Figure 3.7: State Chart Diagram-1

Following figure presents sub-states of enrollment state during seminar class registration.

student enrolled
[seat avallable)/ "k
addStudent() Open For Envolmen
open cancelld
P hedul =
roposed Schaduled > gnunyl logSize)
P Y

cancelled cancalled Slucent alr'rullud
[no seal available]
addToWWaitingList()

seal available
Full
seminar Spit| enroll student | thsed
add ToWaifingList{); entry! notifylnstructor()

student drapped cansider3pi|
o seal available studant droppe
L availabl ludent d 0 cancelled

ircdiing [seal available]
oanc enralFromaitingLisl()

[Closed to Enrlment

L

Figure 3.8: State Chart Diagram-2

4.10 Introduction to Modeling

If you are building a new addition to your house, you probably won“t start by just buying
a bunch of wood and nailing it together until it looks about right. You will want some
blue prints to follow so you can plan and structure the addition before you start working.

Models do the same thing for us in the software world. They are the blue prints for

Object Oriented System Design Page: 36/74

systems. A blue print helps you plan an addition before you build it. It can help you be
sure the design is sound, the requirements have been met and system can withstand even
requirement changes.
4.10.1 Principles of Modeling

e A model is a simplification of reality.
If you want to build a dog house, you can pretty much start with a pile of lumber, some
nails, and a few basic tools, such as a hammer, saw, and tape measure. In a few hours,
with little prior planning, you'll likely end up with a dog house that's reasonably
functional, and you can probably do it with no one else's help. As long as it's big enough
and doesn't leak too much, your dog will be happy. If it doesn't work out, you can always
start over, or get a less demanding dog.
If you want to build a house for your family, you can start with a pile of lumber, some
nails, and a few basic tools, but it's going to take you a lot longer, and your family will
certainly be more demanding than the dog. In this case, unless you've already done it a
few dozen times before, you'll be better served by doing some detailed planning before
you pound the first nail or lay the foundation. At the very least, you'll want to make some
sketches of how you want the house to look. If you want to build a quality house that
meets the needs of your family and of local building codes, you'll need to draw some
blueprints as well, so that you can think through the intended use of the rooms and the
practical details of lighting, heating, and plumbing. Given these plans,
If you really want to build the software equivalent of a house or a high rise, the problem
is more than just a matter of writing lots of software--in fact, the trick is in creating the
right software and in figuring out how to write less software. This makes quality software
development an issue of architecture and process and tools. Even so, many projects start
out looking like dog houses but grow to the magnitude of a high rise simply because they
are a victim of their own success. There comes a time when, if there was no consideration
given to architecture, process, or tools that the dog house, now grown into a high rise,
collapses of its own weight. The collapse of a dog house may annoy your dog; the failure

of a high rise will materially affect its tenants.

Object Oriented System Design Page: 37/74

e Every model may be expressed at different levels of precision.
If you are building a high rise, sometimes you need a 30,000-foot view--for instance, to
help your investors visualize its look and feel. Other times, you need to get down to the
level of the studs--for instance, when there's a tricky pipe run or an unusual structural
element.
The same is true with software models. Sometimes, a quick and simple executable model
of the user interface is exactly what you need; at other times, you have to get down and
dirty with the bits, such as when you are specifying cross-system interfaces or wrestling
with networking bottlenecks. In any case, the best kinds of models are those that let you
choose your degree of detail, depending on who is doing the viewing and why they need
to view it. An analyst or an end user will want to focus on issues of what; a developer
will want to focus on issues of how. Both of these stakeholders will want to visualize a
system at different levels of detail at different times.

e The best models are connected to reality.
A physical model of a building that doesn't respond in the same way as do real materials
has only limited value; a mathematical model of an aircraft that assumes only ideal
conditions and perfect manufacturing can mask some potentially fatal characteristics of
the real aircraft. It's best to have models that have a clear connection to reality, and where
that connection is weak, to know exactly how those models are divorced from the real
world. All models simplify reality; the trick is to be sure that your simplifications don't
mask any important details.

e No single model is sufficient. Every nontrivial system is best approached through

a small set of nearly independent models.

If you are constructing a building, there is no single set of blueprints that reveal all its
details. At the very least, you'll need floor plans, elevations, electrical plans, heating
plans, and plumbing plans.
The operative phrase here is "nearly independent." In this context, it means having
models that can be built and studied separately but that are still interrelated. As in the

case of a building, you can study electrical plans in isolation, but you can also see their

Object Oriented System Design Page: 38/74

mapping to the floor plan and perhaps even their interaction with the routing of pipes in
the plumbing plan.
Visual modeling the process of taking the information from the model and displaying it
graphically using some sort of standard set of graphical elements. A standard is vital to
realizing one of the benefits of visual modeling —Communication. Communication
between users, developers, analysts, testers, managers and anyone else involved with a
project is the primary purpose of visual modeling. By producing visual models of a
system, we can show how the system works on several levels. We can model the
interactions between the users and a system, can model the interaction between different
objects within a system.
4.10.2 Different views of a system
A model is a semantically closed abstraction of a system, meaning that it represents a
complete and self-consistent simplification of reality, created to better understand the
system.
Architecture is the set of significant decisions about

e The organization of a software system

e The selection of the structural elements and their interfaces by which the system

is composed
e Their behavior, as specified in the collaborations among those elements
e The composition of these structural and behavioral elements into progressively
larger subsystems
e The architectural style that guides this organization: the static and dynamic

elements and their interfaces, their collaborations, and their composition

The architecture of a software-intensive system can best be described by five interlocking
views. Each view is a projection into the organization and structure of the system,

focused on a particular aspect of that system

Object Oriented System Design Page: 39/74

wioca bk spsternassenbly
furctiona lity configuration me regerent

Design wiew [roplernetaticn wie

Llze case
=

bebaviar

Process view Deployrment wiew

prfomme nee =y tarn topokogy
=ca kbl distribution
thmxughput delivery
ir=ta lEtion

The use case view of a system encompasses the use cases that describe the behavior of
the system as seen by its end users, analysts, and testers. This view doesn't really specity
the organization of a software system. Rather, it exists to specify the forces that shape the
system's architecture. With the UML, the static aspects of this view are captured in use
case diagrams; the dynamic aspects of this view are captured in interaction diagrams,

statechart diagrams, and activity diagrams.

The design view of a system encompasses the classes, interfaces, and collaborations that
form the vocabulary of the problem and its solution. This view primarily supports the
functional requirements of the system, meaning the services that the system should
provide to its end users. With the UML, the static aspects of this view are captured in
class diagrams and object diagrams; the dynamic aspects of this view are captured in

interaction diagrams, statechart diagrams, and activity diagrams.

The process view of a system encompasses the threads and processes that form the
system's concurrency and synchronization mechanisms. This view primarily addresses
the performance, scalability, and throughput of the system. With the UML, the static and
dynamic aspects of this view are captured in the same kinds of diagrams as for the design

view, but with a focus on the active classes that represent these threads and processes.

Object Oriented System Design Page: 40/74

The implementation view of a system encompasses the components and files that are
used to assemble and release the physical system. This view primarily addresses the
configuration management of the system's releases, made up of somewhat independent
components and files that can be assembled in various ways to produce a running system.
With the UML, the static aspects of this view are captured in component diagrams; the
dynamic aspects of this view are captured in interaction diagrams, state chart diagrams,

and activity diagrams.

The deployment view of a system encompasses the nodes that form the system's hardware
topology on which the system executes. This view primarily addresses the distribution,
delivery, and installation of the parts that make up the physical system. With the UML,
the static aspects of this view are captured in deployment diagrams; the dynamic aspects
of this view are captured in interaction diagrams, statechart diagrams, and activity
diagrams.

Inheritance model: Inheritance model was best described with class diagram and it can be
modeled by making use of generalization relationship among classes in class diagram.
This model is comprised of super class as well as sub classes. This will support the idea

of re-usability.

4.11 Use Case Modeling

The Use Case model is about describing WHAT our system will do at a high-level and
with a user focus for the purpose of scoping the project and giving the application some
structure. The Use Cases are the unit of estimation and also the smallest unit of delivery.
Each increment that is planned and delivered is described in terms of the Use Cases that
will be delivered in that increment.

Use Cases are not a functional decomposition model. Use Cases are not intended to
capture all of the system requirements. Use Cases do not capture HOW the system will

do anything - nor do they capture

Object Oriented System Design Page: 41/74

anything the actor does that does not involve the system. All of these things are better
modeled using other modeling techniques that were developed for those purposes. The
Object Model to capture the static structure of the system and the composition of the
classes. Object Sequence Diagrams and State Transition Diagrams to capture the detailed
dynamic behaviour of the system - the HOW. The Business Process Model to capture the
overall business processes - both computerized and manual.

Use Cases are not an inherently object-oriented modeling technique. There is no
fundamental reason why they couldn't be used as the front-end to a structured
development method - but they're not because the methods gurus are concentrating on the
development of OO methods.

A Use Case represents a kind of task. UML standard calls this a coherent unit of
functionality. A system comprises of 1 or more Use Cases. represented by the elliptical

elements. Titles may be anything but important you understand what they symbolise.

4.12 Design Model

Relationships between classes

Now that we can produce class diagrams we can look at how classes can be related to
each other.

When we are drawing class diagrams to give an overview of the relationships between
classes we may omit the attributes and methods for simplicity sake. You will see that this
is the way that the diagrams have been drawn below. The detail of the attributes and
methods can be added later.

There are three relationships possible:

e association

e aggregation

e generalization (or inheritance)

Object Oriented System Design Page: 42/74

Association

This is the loosest relationship. It simply means that there will be some communication
between the classes but nothing special. This will mean more to you when we have
looked at the other two types of relationship.

An example would be Student to Module

STUDENT MODULE

Aggregation

This means that one class is ,,part of * another class.

This is tighter than an association, in other words the classes are more closely related. To
determine whether the relationship is an aggregation it is useful to ask yourself if one
class is part of another class. If you can answer ,,yes” then it probably is an aggregation.
An example would be Course to Module

COURSE <> MODULE

The way that I test to make sure that this is correct is to ask myself
e can [say ,,module is a part of course"

e s it essential for course to exist before module can exist

If I can answer yes to both (or at least yes to the first) then I am fairly satisfied.

In this example module is definitely a part of a course. If there was no course then it
would be possible to have a module but it could never be offered and would never have
any students, so module is dependent on course and so is a part of it.

Generalization (Generalization/Specialization)

The third relationship is inheritance. This is extremely important to object oriented
systems and is a very powerful feature. The rule that applies here is to ask whether one
class is ,,a kind of “another class.

Super Classes
The real power and impact of inheritance becomes clearer when we start to add attributes

and methods. Let us first add some attributes and methods to the class BUILDING.

Object Oriented System Design Page: 43/74

BUILDING

Walls
No: of rooms

Buld
Destroy

/N

HOUSE

There are clearly lot more attributes and methods that we could add to the class
BUILDING, but we must remember that they must apply to a/l BUILDINGS.

What is really important is that HOUSE now inherits all the generalized attributes and
methods from BUILDING, and then we can add the specialized attributes that make it
special.

Sub classes
A class will inherit all the attributes and methods from all its ancestors.

If you look at the structure of many of the object oriented languages you will see that
there is a base class. This is more clearly demonstrated by looking at an example.

Let us imagine all the people that one might find in a university; we will call them
university members. These may be students or members of staff and staff may be
academic or administrative.

In outline this would look like this:

UNIVERSITY
MEMBER,
STAFF STUDENT
AN
ACADEMIC ADMINISTEATIVE

Object Oriented System Design Page: 44/74

Unit-5: GRASP and UML
5.1 GRASP (object-oriented design)

General Responsibility Assignment Software Patterns (or Principles),
abbreviated GRASP, consists of guidelines for assigning responsibility to classes and
objects in object-oriented design.

The different patterns and principles used in GRASP are: Controller, Creator, Indirection,
Information Expert, High Cohesion, Low Coupling, Polymorphism, Protected Variations,
and Pure Fabrication. All these patterns answer some software problem, and in almost
every case these problems are common to almost every software development project.
These techniques have not been invented to create new ways of working, but to better
document and standardize old, tried-and-tested programming principles in object-oriented
design.

Computer scientist Craig Larman states that "the critical design tool for software
development is a mind well educated in design principles. It is not the UML or any other
technology." Thus, GRASP is really a mental toolset, a learning aid to help in the design
of object-oriented software.

5.2 Patterns

5.2.1 Controller
The Controller pattern assigns the responsibility of dealing with system events to a non-
Ul class that represents the overall system or a use case scenario. A Controller object is a

non-user interface object responsible for receiving or handling a system event.

A use case controller should be used to deal with all system events of a use case, and may
be used for more than one use case (for instance, for use cases Create User and Delete
User, one can have a single UserController, instead of two separate use case controllers).
It is defined as the first object beyond the UI layer that receives and coordinates
("controls") a system operation. The controller should delegate the work that needs to be
done to other objects; it coordinates or controls the activity. It should not do much work

itself. The GRASP Controller can be thought of as being a part of the Application/Service

Object Oriented System Design Page: 45/74

layer (assuming that the application has made an explicit distinction between the
application/service layer and the domain layer) in an object-oriented system with

Common layers in an information system logical architecture

5.2.2 Creator
Creation of objects is one of the most common activities in an object-oriented system.
Which class is responsible for creating objects is a fundamental property of the

relationship between objects of particular classes.

In general, a class B should be responsible for creating instances of class A if one, or
preferably more, of the following apply:

e Instances of B contain or compositely aggregate instances of A
e Instances of B record instances of A
e Instances of B closely use instances of A

e Instances of B have the initializing information for instances of A and pass it on

creation.

5.2.3 High Cohesion

High Cohesion is an evaluative pattern that attempts to keep objects appropriately
focused, manageable and understandable. High cohesion is generally used in support of
Low Coupling. High cohesion means that the responsibilities of a given element are
strongly related and highly focused. Breaking programs into classes and subsystems is an
example of activities that increase the cohesive properties of a system. Alternatively, low
cohesion is a situation in which a given element has too many unrelated responsibilities.
Elements with low cohesion often suffer from being hard to comprehend, hard to reuse,

hard to maintain and averse to change.

5.2.4 Indirection
The Indirection pattern supports low coupling (and reuse potential) between two

elements by assigning the responsibility of mediation between them to an intermediate

Object Oriented System Design Page: 46/74

object. An example of this is the introduction of a controller component for mediation

between data (model) and its representation (view) in the Model-view-controller pattern.

5.2.4 Information Expert

Information Expert (also Expert or the Expert Principle) is a principle used to
determine where to delegate responsibilities. These responsibilities include methods,
computed fields, and so on.

Using the principle of Information Expert, a general approach to assigning
responsibilities is to look at a given responsibility, determine the information needed to
fulfill it, and then determine where that information is stored.

Information Expert will lead to placing the responsibility on the class with the most

information required to fulfill it.

5.2.5Low Coupling

Low Coupling is an evaluative pattern, which dictates how to assign responsibilities to
support:

e lower dependency between the classes,

e change in one class having lower impact on other classes,

e Higher reuse potential.

5.2.6 Polymorphism
According to Polymorphism, responsibility of defining the variation of behaviors based
on type is assigned to the types for which this variation happens. This is achieved using

polymorphic operations.

5.2.7 Protected Variations
The Protected Variations pattern protects elements from the variations on other
elements (objects, systems, subsystems) by wrapping the focus of instability with

an interface and using polymorphism to create various implementations of this interface.

Object Oriented System Design Page: 47/74

5.2.8 Pure Fabrication

A Pure Fabrication is a class that does not represent a concept in the problem domain,
specially made up to achieve low coupling, high cohesion, and the reuse potential thereof
derived (when a solution presented by the Information Expert pattern does not). This kind

of class is called "Service" in Domain-driven design.

5.3 Factory (object-oriented programming)

In object-oriented programming, a factoryis an object for creating other objects —
formally a factory is simply an object that returns an object from some method call,
which is assumed to be "new". More broadly, a subroutine that returns a "new" object
may be referred to as a "factory", as in factory method or factory function. This is a basic

concept in OOP, and forms the basis for a number of related software design patterns.

Products

Factories

In class-based programming, a factory is an abstraction of a constructor of a class, while
in prototype-based programming a factory is an abstraction of a prototype object. A
constructor is concrete in that it creates objects as instances of a single class, and by a
specified process (class instantiation), while a factory can create objects by instantiating
various classes, or by using other allocation schemes such as an object pool. A prototype
object is concrete in that it is used to create objects by being cloned, while a factory can

create objects by cloning various prototypes, or by other allocation schemes.

Factories may be invoked in various ways, most often a method call (a factory method),

sometimes by being called as a function if the factory is a function object (a factory

Object Oriented System Design Page: 48/74

function). In some languages factories are generalizations of constructors, meaning
constructors are themselves factories and these are invoked in the same way. In other

languages factories and constructors are invoked differently, for example using the

keyword new to invoke constructors but an ordinary method call to invoke factories; in

these languages factories are an abstraction of constructors but not strictly a

generalization, as constructors are not themselves factories.

Terminology differs as to whether the concept of a factory is itself a design pattern — in
the seminal book Design Patterns there is no "factory pattern", but instead two patterns
(factory method pattern and abstract factory pattern) that use factories. Some sources
refer to the concept as the factory pattern, while others consider the concept itself
aprogramming idiom, reserving the term "factory pattern" or "factory patterns" to more
complicated patterns that use factories, most often the factory method pattern; in this
context, the concept of a factory itself may be referred to as a simple factory. In other
contexts, particularly the Python language, "factory" itself is used, as in this article. More
broadly, "factory" may be applied not just to an object that returns objects from some
method call, but to a subroutine that returns objects, as in a factory function (even if
functions are not objects) or factory method. Because in many languages factories are
invoked by calling a method, the general concept of a factory is often confused with the

specific factory method pattern design pattern.

Using factories instead of constructors or prototypes allows one to use polymorphism for
object creation, not only object use. Specifically, using factories provides encapsulation,
and means the code is not tied to specific classes or objects, and thus the class hierarchy
or prototypes can be changed or refactored without needing to change code that uses

them — they abstract from the class hierarchy or prototypes.

OOP provides polymorphism on object use by method dispatch, formally subtype
polymorphism via single dispatch determined by the type of the object on which the

Object Oriented System Design Page: 49/74

method is called. However, this does not work for constructors, as constructors create an
object of some type, rather than using an existing object. More concretely, when a

constructor is called, there is no object yet on which to dispatch.

More technically, in languages where factories generalize constructors, factories can
usually be used anywhere constructors can be, meaning that interfaces that accept a
constructor can also in general accept a factory — usually one only need something that

creates an object, rather than needing to specify a class and instantiation.

For example, in Python, the collections.defaultdict class has a constructor which creates

an object of type defaultdict whose default values are produced by invoking a factory.

The factory is passed as an argument to the constructor, and can itself be a constructor, or

anything that behaves like a constructor — a callable object that returns an object, i.e., a

factory. For example, using the list constructor for lists:

collections.defaultdict([default factoryl, ...]])
d = defaultdict(list)

Factory objects are used in situations where getting hold of an object of a particular kind
is a more complex process than simply creating a new object, notably if complex
allocation or initialization is desired. Some of the processes required in the creation of an
object include determining which object to create, managing the lifetime of the object,
and managing specialized build-up and tear-down concerns of the object. The factory
object might decide to create the object's class (if applicable) dynamically, return it from
an object pool, do complex configuration on the object, or other things. Similarly, using
this definition, a singleton implemented by the singleton pattern is a formal factory — it

returns an object, but does not create new objects beyond the single instance.

Object Oriented System Design Page: 50/74

Example
The simplest example of a factory is a simple factory function, which just invokes a

constructor and returns the result. In Python, a factory function f that instantiates a

class A can be implemented as:

def £():
return A()
A simple factory function implementing the singleton pattern is:
def £():
if f.obj is None:
f.obj = A()

return f.obj

f.obj = None

This will create an object when first called, and always return the same object thereafter.

5.4 Delegation pattern

In software engineering, the delegation patternis a design pattern in object-oriented
programming where an object, instead of performing one of its stated tasks, delegates that
task to an associated helper object. There is an Inversion of Responsibility in which a
helper object, known as a delegate, is given the responsibility to execute a task for
the delegator. The delegation pattern is one of the fundamental abstraction patterns that
underlie other software patterns such as composition (also referred to as
aggregation), mixins and aspects.

Examples

Java examples

In this Java example, the Printer class has a print method. This print method, rather than
performing the print itself, delegates to class RealPrinter. To the outside world it appears
that the Printer class is doing the print, but the RealPrinter class is the one actually doing

the work.

Object Oriented System Design Page: 51/74

Delegation is simply passing a duty off to someone/something else. Here is a simple
example:
class RealPrinter { // the "delegate"
void print() {
System.out.println("something");

}

class Printer { // the "delegator"
RealPrinter p = new RealPrinter(); // create the delegate
void print() {
p.print(); // delegation
h

public class Main {
// to the outside world it looks like Printer actually prints.
public static void main(String[] args) {
Printer printer = new Printer();

printer.print();

C++ example

This example is a C++ version of the complex Java example above. Since C++ does not
have an interface construct, a pure virtual class plays the same role. The advantages and
disadvantages are largely the same as in the Java example.

#include <iostream>

using namespace std;

Object Oriented System Design Page: 52/74

class I {
public:
virtual void f() = 0;
virtual void g() = 0;
virtual ~I() {}
5

class A : public I {
public:
void () { cout << "A: doing f()" << endl; }
void g() { cout << "A: doing g()" <<endl; }
~A() { cout <<"A: cleaning up." <<endl; }

¥

class B : public I {
public:
void () { cout << "B: doing f()" << endl; }
void g() { cout << "B: doing g()" << endl; }
~B() { cout << "B: cleaning up." << endl; }

¥

class C : public I {
public:
// construction/destruction

CO :i(new A()) { }
virtual ~C() { delete i; }

private:

Object Oriented System Design

Page: 53/74

// delegation

I*1;

public:
void f() { i->1(); }
void g() { 1->g(); }

// normal attributes
void toA() { delete i; 1 =new A(); }
void toB() { delete 1; 1 =new B(); }

int main() {
Cc;
c.f(); //A: doing f()
c.g(); //A: doing g()
c.toB(); //A: cleaning up.
c.f(); //B: doing ()
c.g(); //B: doing g()

Object Oriented System Design

Page: 54/74

5.5 Applying GOF Design Pattern

Design patterns represent the best practices used by experienced object-oriented software
developers. Design patterns are solutions to general problems that software developers
faced during software development. These solutions were obtained by trial and error by
numerous software developers over quite a substantial period of time.

What is Gang of Four (GOF)?

In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson und John Vlissides
published a book titled Design Patterns - Elements of Reusable Object-Oriented
Software which initiated the concept of Design Pattern in Software development.

These authors are collectively known as Gang of Four (GOF). According to these
authors design patterns are primarily based on the following principles of object
orientated design.

e Program to an interface not an implementation

e Favor object composition over inheritance

Usage of Design Pattern

Design Patterns have two main usages in software development.

COMMON PLATFORM FOR DEVELOPERS

Design patterns provide a standard terminology and are specific to particular scenario.
For example, a singleton design pattern signifies use of single object so all developers
familiar with single design pattern will make use of single object and they can tell each
other that program is following a singleton pattern.

BEST PRACTICES

Design patterns have been evolved over a long period of time and they provide best
solutions to certain problems faced during software development. Learning these patterns
helps un-experienced developers to learn software design in an easy and faster way.

Types of Design Pattern

As per the design pattern reference book Design Patterns - Elements of Reusable
Object-Oriented Software, there are 23 design patterns. These patterns can be
classified in three categories: Creational, Structural and behavioral patterns. We'll also
discuss another category of design patterns: J2EE design patterns.

Object Oriented System Design Page: 55/74

S.N. Pattern & Description

Creational Patterns

These design patterns provides way to create objects while hiding the creation
1 logic, rather than instantiating objects directly using new opreator. This gives
program more flexibility in deciding which objects need to be created for a

given use case.

Structural Patterns

These design patterns concern class and object composition. Concept of

inheritance is used to compose interfaces and define ways to compose objects

to obtain new functionalities.

Behavioral Patterns

3 These design patterns are specifically concerned with communication between

objects.

J2EE Patterns

4 These design patterns are specifically concerned with the presentation tier.

These patterns are identified by Sun Java Center.

Name of the 23 design pattern
Factory Pattern
Abstract Factory Pattern
Singleton Pattern
Builder Pattern
Prototype Pattern
Adapter Pattern

Bridge Pattern
Filter/Criteria Pattern
Composite Pattern
Decorator Pattern
Facade Pattern
Flyweight Pattern
Proxy Pattern

Chain of Responsibility Pattern
Command Pattern
Interpreter Pattern
Iterator Pattern
Mediator Pattern
Memento Pattern
Observer Pattern

State Pattern

Object Oriented System Design

Page: 56/74

Null Object Pattern
Strategy Pattern

Template Pattern

Visitor Pattern

MVC Pattern

Business Delegate Pattern
Composite Entity Pattern
Data Access Object Pattern
Front Controller Pattern
Intercepting Filter Pattern
Service Locator Pattern
Transfer Object Pattern

5.5.1 Factory Pattern

Factory pattern is one of most used design pattern in Java. This type of design pattern
comes under creational pattern as this pattern provides one of the best ways to create an
object.

In Factory pattern, we create object without exposing the creation logic to the client and
refer to newly created object using a common interface.

Implementation

We're going to create a Shape interface and concrete classes implementing
the Shape interface. A factory class ShapeFactory is defined as a next step.

FactoryPatternDemo, our demo class will use ShapeFactory to get a Shape object. It will
pass information (CIRCLE / RECTANGLE / SQUARE) to ShapeFactory to get the type of
object it needs.

Object Oriented System Design Page: 57/74

FactoryPattern
Shape <<Interface>> Demo

+main(} : void

+draw() : void

F
implements implements asks
implements
Circle Square Rectangle +
ShapeFactory
creatas
+draw() : void +draw() : void +draw() : void +getShape() :
Shape

Steps involved

Step 1
Create an interface.

Shape.java

public interface Shape {

void draw();

-

Step 2
Create concrete classes implementing the same interface.

Rectangle.java

public class Rectangle implements Shape {

@Override
public void draw() {
System.out.println("Inside Rectangle::draw() method.");

Object Oriented System Design Page: 58/74

Square.java

public class Square implements Shape {

@Override
public void draw() {

System.out.println("Inside Square::draw() method.");

()

Circle.java

public class Circle implements Shape {

@Override
public void draw() {

System.out.println("Inside Circle::draw() method.");

——

Step 3
Create a Factory to generate object of concrete class based on given information.

ShapeFactory.java

public class ShapeFactory {

//luse getShape method to get object of type shape
public Shape getShape(String shapeType){

Object Oriented System Design Page: 59/74

if(shapeType == null){
return null;

b

if(shapeType.equalsIgnoreCase("CIRCLE")){
return new Circle();

} else if(shapeType.equalsignoreCase("RECTANGLE")){
return new Rectangle();

i else if(shapeType.equalsignoreCase("SQUARE")){
return new Square();

b

return null;

——

Step 4
Use the Factory to get object of concrete class by passing an information such as type.

FactoryPatternDemo.java

public class FactoryPatternDemo {

public static void main(String|[| args) {

ShapeFactory shapeFactory = new ShapeFactory();

//get an object of Circle and call its draw method.

Shape shapel = shapeFactory.getShape("CIRCLE");

//call draw method of Circle

shapel.draw();

Object Oriented System Design Page: 60/74

//get an object of Rectangle and call its draw method.
Shape shape2 = shapeFactory.getShape("RECTANGLE");

//call draw method of Rectangle
shape2.draw();

//get an object of Square and call its draw method.

Shape shape3 = shapeFactory.getShape("SQUARE");

//call draw method of circle

shape3.draw();

——

Step 5
Verify the output.

Inside Circle::draw() method.
Inside Rectangle::draw() method.

Inside Square::draw() method.

5.5.2 Singleton Pattern
Singleton pattern is one of the simplest design patterns in Java. This type of design
pattern comes under creational pattern as this pattern provides one of the best way to

create an object.

This pattern involves a single class which is responsible to creates own object while

making sure that only single object get created. This class provides a way to access its

Object Oriented System Design Page: 61/74

only object which can be accessed directly without need to instantiate the object of the

class.

Implementation
We're going to create a SingleObject class. SingleObject class have its constructor as

private and have a static instance of itself.

SingleObject class provides a static method to get its static instance to outside
world.SingletonPatternDemo, our demo class will use SingleObject class to get

a SingleObject object.

SingletonPatternDemo

+main() : void

asks

Y
SingleObject returns

-instance: SingleObject

-SingleObject ()
+getinstance():SingleObject
+showMessage():void

Step 1
Create a Singleton Class.

SingleObject.java

Object Oriented System Design Page: 62/74

public class SingleObject {

//create an object of SingleObject

private static SingleObject instance = new SingleObject();

//make the constructor private so that this class cannot be
//instantiated

private SingleObject(){}

//Get the only object available
public static SingleObject getlnstance() {

return instance;

()

public void showMessage(){
System.out.println("Hello World!");

——

——

Step 2
Get the only object from the singleton class.

SingletonPatternDemo.java

public class SingletonPatternDemo {

public static void main(String| | args) {

//illegal construct
//Compile Time Error: The constructor SingleObject() is not visible

//SingleObject object = new SingleObject();

Object Oriented System Design

Page: 63/74

//Get the only object available
SingleObject object = SingleObject.getInstance();

//show the message

object.showMessage();

}

Step 3
Verify the output.

Hello World!

5.5.3 Adapter Pattern
Adapter pattern works as a bridge between two incompatible interfaces. This type of
design pattern comes under structural pattern as this pattern combines the capability of

two independent interfaces.

This pattern involves a single class which is responsible to join functionalities of
independent or incompatible interfaces. A real life example could be a case of card reader
which acts as an adapter between memory card and a laptop. You plugins the memory
card into card reader and card reader into the laptop so that memory card can be read via

laptop.

We are demonstrating use of Adapter pattern via following example in which an audio
player device can play mp3 files only and wants to use an advanced audio player capable
of playing vlc and mp4 files.

Implementation

We've an interface MediaPlayer interface and a concrete class AudioPlayer implementing

theMediaPlayer interface. AudioPlayer can play mp3 format audio files by default.

Object Oriented System Design Page: 64/74

We're having another interface AdvancedMediaPlayer and concrete classes implementing

theAdvancedMediaPlayer interface. These classes can play vic and mp4 format files.

We want to make AudioPlayer to play other formats as well. To attain this, we've created
an adapter classMediaAdapter which implements the MediaPlayer interface and

uses AdvancedMediaPlayer objects to play the required format.

AudioPlayer uses the adapter class MediaAdapter passing it the desired audio type
without knowing the actual class which can play the desired

format. AdapterPatternDemo, our demo class will usedAudioPlayer class to play various

formats.
<<Interface=»
MediaPlayer AdapterPattern
Demo
+play() : void +main(] :void
F
<¢interfacass
AdvancedMediaPlayer mplements waplements Uses
+playvic() :woid
+playip| ivoid
5 MediaAdapter AudioPlayer
-advancedMedia
- p}aﬁ;’; i -mediaddapter :
vancediMedia
uses uses] Mediaddapter
VicPlayer MpdPlayer e T B
+MediaAdapter|): +play{) : void
void
+playWLC]) ¢ void +HplayWiLC() @ void +playl) : vold
+playhipd() @ void +playiipal) : woid

Step 1
Create interfaces for Media Player and Advanced Media Player.
MediaPlayer.java

Object Oriented System Design Page: 65/74

public interface MediaPlayer {
public void play(String audioType, String fileName);
h

AdvancedMediaPlayer.java

public interface AdvancedMediaPlayer {
public void playVlc(String fileName);
public void playMp4(String fileName);
;

Step 2

Create concrete classes implementing the AdvancedMediaPlayer interface.

VicPlayer.java

public class VicPlayer implements AdvancedMediaPlayer {
@Override
public void playVle(String fileName) {

System.out.println("Playing vlc file. Name: "+ fileName);

——

@Override
public void playMp4(String fileName) {
//do nothing
}
b
Mp4Player.java

public class Mp4Player implements AdvancedMediaPlayer {

@Override
public void playVlc(String fileName) {
//do nothing

Object Oriented System Design

Page: 66/74

@Override
public void playMp4(String fileName) {
System.out.println("Playing mp4 file. Name: "+ fileName);

b
Step 3

Create adapter class implementing the MediaPlayer interface.

MediaAdapter.java

public class MediaAdapter implements MediaPlayer {
AdvancedMediaPlayer advancedMusicPlayer;

public MediaAdapter(String audioType){
if(audioType.equalslgnoreCase("vlc")){
advancedMusicPlayer = new VlcPlayer();
i else if (audioType.equalsignoreCase("mp4")){
advancedMusicPlayer = new Mp4Player();

}

—

@Override
public void play(String audioType, String fileName) {
if(audioType.equalsIgnoreCase("vlc")){
advancedMusicPlayer.playVic(fileName);
ielse if(audioType.equalsIgnoreCase("mp4")){
advancedMusicPlayer.playMp4(fileName);

e

Object Oriented System Design

Page: 67/74

}
Step 4

Create concrete class implementing the MediaPlayer interface.

AudioPlayer.java

public class AudioPlayer implements MediaPlayer {
MediaAdapter mediaAdapter;

@Override
public void play(String audioType, String fileName) {

//inbuilt support to play mp3 music files
if(audioType.equalsIgnoreCase("mp3")){
System.out.println("Playing mp3 file. Name: "+ fileName);

}

//mediaAdapter is providing support to play other file formats
else if(audioType.equalsignoreCase("vlc")
|| audioType.equalslgnoreCase("mp4")){
mediaAdapter = new MediaAdapter(audioType);
mediaAdapter.play(audioType, fileName);

}

else{
System.out.println("Invalid media. "+

audioType + " format not supported");

——
——

(S

Object Oriented System Design Page: 68/74

Step 5
Use the AudioPlayer to play different types of audio formats.

AdapterPatternDemo.java

public class AdapterPatternDemo {
public static void main(String|[| args) {
AudioPlayer audioPlayer = new AudioPlayer();

audioPlayer.play("mp3", "beyond the horizon.mp3");
audioPlayer.play("mp4", "alone.mp4");
audioPlayer.play("vlc", "far far away.vlc");

snn

audioPlayer.play("avi", "mind me.avi");

()

Step 6
Verify the output.

Playing mp3 file. Name: beyond the horizon.mp3
Playing mp4 file. Name: alone.mp4
Playing vlc file. Name: far far away.vlc

Invalid media. avi format not supported

5.5.4 Observer Pattern
Observer pattern is used when there is one to many relationship between objects such as
if one object is modified, its depenedent objects are to be notified automatically.

Observer pattern falls under behavioral pattern category.

Object Oriented System Design Page: 69/74

Implementation

Observer pattern uses three actor classes. Subject, Observer and Client. Subject, an object
having methods to attach and de-attach observers to a client object. We've created
classes Subject, Observerabstract class and concrete classes extending the abstract class
the Observer.

ObserverPatternDemo, our demo class will use Subject and concrete class objects to

show observer pattern in action.

ObserverPatternDemo

+main() : void

asks
b 4
<<ghstracts» Observer = ugas Subject
+subject : Subject -ohservers :
+update() : void List<Observers>
state @ int
extend t
o +getsState]) :int
extend +setState() : void
BinaryObserver OctalObserver HexaObserver +a:ttach[] ol
+ notifyallobservers()
+subject : Subject || +subject :Subject || +subject : Subject : woid
supdate() : void +update(] : void +update{) : void

Step 1

Create Subject class.
Subject.java

import java.util. ArrayList;

import java.util. List;

public class Subject {

Object Oriented System Design Page: 70/74

private List<Observer> observers
=new ArrayList<Observer>();

private int state;

public int getState() {

return state;

public void setState(int state) {
this.state = state;

notifyAllObservers();

——

public void attach(Observer observer){

observers.add(observer);

——

public void notifyAllObservers() {
for (Observer observer : observers) {

observer.update();

It
S

—

§
Step 2
Create Observer class.

Observer.java

public abstract class Observer {

protected Subject subject;

Object Oriented System Design

Page: 71/74

public abstract void update();
b
Step 3
Create concrete observer classes

BinaryObserver.java

public class BinaryObserver extends Observer {

public BinaryObserver(Subject subject){
this.subject = subject;
this.subject.attach(this);

J

@Override
public void update() {
System.out.println("Binary String: "
+ Integer.toBinaryString(subject.getState()));

——

}

OctalObserver.java

public class OctalObserver extends Observer {

public OctalObserver(Subject subject){
this.subject = subject;
this.subject.attach(this);

b

@Override
public void update() {

Object Oriented System Design

Page: 72/74

System.out.println("Octal String: "
+ Integer.toOctalString(subject.getState()));
!
}

HexaObserver.java

public class HexaObserver extends Observer {

public HexaObserver(Subject subject){
this.subject = subject;
this.subject.attach(this);

J

@Override
public void update() {
System.out.println("Hex String: "
+ Integer.toHexString(subject.getState()).toUpperCase());

——

}

Step 4
Use Subject and concrete observer objects.

ObserverPatternDemo.java

public class ObserverPatternDemo {
public static void main(String|]| args) {

Subject subject = new Subject();

new HexaObserver(subject);
new OctalObserver(subject);

new BinaryObserver(subject);

Object Oriented System Design

Page: 73/74

System.out.println("First state change: 15");
subject.setState(15);
System.out.println("Second state change: 10");
subject.setState(10);

}

Step 5
Verify the output.

First state change: 15
Hex String: F

Octal String: 17

Binary String: 1111
Second state change: 10
Hex String: A

Octal String: 12

Binary String: 1010

Object Oriented System Design Page: 74/74

