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AverageHeightApp — take 2

 Same as before, but with Eclipse.
— Eclipse Workspace
— Creating new project
— Creating a new package
— Creating new class



Comments

* Single line comments:

// This is a comment.
 Multiple line comments:

/ *

All of these lines.

Are commented.

*/



A Word About Types

Value Types Reference Types

* Integers * String

 Real numbers * Array

* Booleans * Objects typed by their class
* Character * Classes themselves

Values types are defined entirely by their value.

Reference types are structures in memory.
e Address in memory uniquely identifies them.
* The “value” of a variable that holds a reference
type is this address.



Value Types

Integers
— byte, short, int, long
— Differenceisinsize (1, 2, 4, or 8 bytes)
— No “unsigned” version
— Decimal (255), hexidecimal (0xff), and binary (0b11111111) literal formats

Real Numbers
— float, double

— Difference is in precision.

Characters
— char
— Characters in Java are 16-bit Unicode values
— Literals use single-quote: ¢’
— Non-printable escape sequence: ‘\u#t###’ where # is hex digit.
* Example: \uOOF1’ for fi
Logical
— boolean
— Literals are true and false



Packages, classes, and methods, oh my!

A package is a collection of classes.
— Defined by a “package” statement at the beginning of a source code file.
 Example:
package lec02.ex01;
» All classes defined in the file belong to that package.
A class is a collection of functions (for now).

— Defined by “class” keyword followed by a block of code delimited by curly
braces.

— Example:

public class {
/* Class definition. */

}
A method is just another name for a function or procedure and is a named
sequence of Java statements.

— Defined within a class.

— Can be “called”, or “invoked” with parameters

— Syntax: a method header or signature followed by a block of code delimited by
curly braces.



Method Sighature

Almost everything you need to know about a method is in
Its sighature.

— 5 parts to a method signature

* Access modifier

— public, private, protected

— If unspecified, then “package” access.
Method type

— static or default (i.e., not specified)

— The keyword static indicates that this is a “class method”.

— If the keyword static is not present, then this is an “instance method”.
Return type

— The type of value returned by the method as a result.

— If there is no result, then this is indicated by the keyword void.

Method name

— Must start with a letter, S, or _

— Can contain letters, numbers, S, or _ (no spaces or other punctuation)
Parameter list

— In parenthesis, comma-separated list of parameter typed variable names.

» If the method has no parameters, then just: ()
— Each parameter variable name is preceded by a type declaration.



Method Signature Examples
public static void main(String[] args)
int foo (int a, MyType b, double c)
protected static void bar()
static String toUpperCase(String s)

static private Secret my secret()



Until we know a little more...

e All of the methods in my examples today are
going to be public class methods.
— This means their signatures will include the words:
* public
* static



Inside a method

 The body of a method is a sequence of statements.
* A statement ends in a semi-colon

— Types of statements:
e Declarations of local variables
* Assignment
e Conditional
* Loop
 Method call
* Return statement

 Blocks

— Zero or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa



Inside a method

 The body of a method is a sequence of statements.

e A statement ends in a semi-colon

— Types of statements:
* Declaration of local variables
* Assignment
e Conditional
* Loop
 Method call
* Return statement

e Statement Blocks
— One or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa



Local variable declaration

* Syntax:
type name;
type namel, name2, name3;
type name = value;

* Alocal variable is valid within the block of
statements where the declaration occurs.
— This is known as the scope of the variable.

— The declaration must occur before the variable is
used.

e Parameter names are local variables that are in
scope for the entire method body.



Variable Names

Variable names should start with a letter and can contain
letters, digits, S, or _

— Can not start with digit

— Can not contain whitespace or punctuation other than S or _
* In general, use of punctuation in variable names is discouraged.

— Case sensitive

— Can not be a keyword

Legal:

— foo, bar, a_variable, var123

Legal but not considered good:

— var_with_S, badness

lllegal:

— 1var, while, break, this has whitespace



Inside a method

 The body of a method is a sequence of statements.
* A statement ends in a semi-colon

— Types of statements:
e Declarations of local variables
* Assignment
e Conditional
* Loop
 Method call
* Return statement

 Blocks

— Zero or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa



Assignment

Syntax:

variable = expression;
Note: single equals for assignment.

Left hand side must be some sort of variable
that can be assigned.

Expression must produce a value that matches
the type of the variable.



Expressions

* A sequence of symbols that can be evaluated to
produce a value.

— Can be used wherever a value is expected.
* Types of expressions:

— Literal values: 123, ‘c’, “a string”, true
— Variable name: a_variable

— Value retrieved from an array: my_array[3]
— Class/object fields: Math.PI

— Value as a result of a method call: foo()

— Compound expressions formed by applying an
operator: 4+3*2



Operators

Unary: +, -, |, ++, --

Arithmetic: +, -, /, *, %

Relational: ==, I=, >, >=, <, <=

Boolean: &&, | |

Ternary: ?:

— expression ? if true : if false

Bitwise: ~, <<, >>, >>>, &, |, /

Be aware of precedence

— Can be controlled by explicitly grouping with ()

Be aware of context

— Some operators do different things depending on the types of
the values they are applied to.



Assignment and Unary Operators

 Most numeric operators have an “assignment” form.

— Easy syntax for applying the operator to a variable and
assigning the result back to the same variable.

— Examples:
* a+=3//Equivalenttoa=a+3

* b*=4//Equivalenttob=b *4
 Unary operators ++ and —

— Used with integer typed variables to increment and
decrement.
— Usually used as a statement unto itself:
 a++; //Equivalenttoa=a+1;
 b--; //Equivalenttob=b-1;



Importing JAR files into a project

Save JAR file somewhere.
Create a new project in Eclipse.

Right click the src folder in the project and
choose, “Import...”

Choose the type General->Archive and click
Next

Browse for and select the JAR file.
Click Finish
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Variable declarations for value types
Integer math vs. Real math

Ternary operator

Operator precedence

Boolean operator shortcut



Inside a method

 The body of a method is a sequence of statements.
* A statement ends in a semi-colon

— Types of statements:
* Variable declaration
* Assignment
e Conditional
* Loop
 Method call
* Return statement

* Blocks
— Zero or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa



Conditional Execution: if-else if-else
1f (expression) {
block

} else 1f (expression) {
block

} else {
block



if example

1f (score > 90) {
System.out.println(“You
} else 1if (score > 80) {
System.out.println(“You
} else 1if (score > 70) {
System.out.println(“You
} else 1if (score > 60) {
System.out.println(“You
} else {
System.out.println(“You

}

got an A!");
got a B.");
got a C?");
got a D :=(");

failed”);



Conditional Execution: switch

switch (expression) { ¢ Works with basic

case value: value data types
statements * Works with String as
break : of Java 7
4

e Execution starts at

case value: first matching case
statements value
break; e or default if
.« e provided and no
default: case matches
statements e Continues until break
) statement or end of

switch.



Switch Example

switch (c) {

case 'a':

case 'e’

case '1i'

case 'O

case 'u':
System.out.println("Vowel");
break;

default:

System.out.println("Consonant");



Note

* This is where | ended up stopping in lecture.
The remaining slides have been copied as the
beginning of the next lecture.
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if and switch demo
Variables scoped within block
Style hint:

— Don’t test boolean expression against true/false

Testing real numbers with epsilon bounds



Inside a method

 The body of a method is a sequence of statements.
* A statement ends in a semi-colon

— Types of statements:
* Variable declaration
* Assignment
e Conditional
* Loop
 Method call
* Return statement

* Blocks
— Zero or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa



Loops: while

while (expression) {
block

}

do {
block
} while (expression);



while example

int sum = 0;

int n = 1;

while (n < 11) {
sum += n;
n++;

}
System.out.println(“The

sum of 1 to 10 is:

“ + sum);



Loops: for

for (init; test; update) {
block
}



for example

int sum = 0;
for(int n=1; n<ll; n++) {
sum += n;

}

System.out.println(“The sum of 1 to 10 is: “ + sum);

* Note that variable n is declared as part of init
expression in for loop.

— This is a common programming idiom if loop variable
is only needed for the loop.

— Scope of variable is limited to the loop block.



Loop odds and ends

* To skip to next iteration of loop body use
“continue” statement.

* To break out of the loop body use “break”
statement.



Example

while and for

while and for equivalence
scope of for loop variable
break / continue



Inside a method

 The body of a method is a sequence of statements.
* A statement ends in a semi-colon

— Types of statements:
* Variable declaration
* Assignment
e Conditional
* Loop
 Method call
* Return statement

 Blocks

— Zero or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa



Calling Methods

Calling a class method defined in the same class:
methodName ( parameters) ;

Calling a class method defined in a different class (same package):
ClassName.methodName (parameters) ;

Calling a class method defined in a different package:
PackageName.ClassName.methodName (parameters)

In the above “parameters” is a comma separated list of values.
— A value can be also be an expression that results in a value.
— Must match in number and type according to method’s signature.

A method call that returns a value (i.e., not a “void” method) can be
part of an expression.
int max times min = max(a, b, c¢) * min(a, b, c);



Inside a method

 The body of a method is a sequence of statements.
* A statement ends in a semi-colon

— Types of statements:
* Variable declaration
* Assignment
e Conditional
* Loop
 Method call
* Return statement

 Blocks

— Zero or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa



Return

* Syntax:

return expression;

* Ends execution of a method and returns the
value of the expression as the result of the
method.

— Must match type declared in method sighature.
— If method return type is “void”, then simply:

return;



lec02.ex5.Example5

Calling methods

Compound expressions as part of method call
to provide parameter value.

Returning from middle of method
Unreachable code error

Calling method in same/different class, same/
different package



Import Directive

* Maps class names from other packages into
current name space.

— Convenient if going to use one or more class
names repeatedly.

 Map all names from a package:
import package.*;
* Map a specific name from a package:

import package.name;



Example50therRevisited

* import
* Math revisited

— Classes in java.lang package are automatically
imported.



