Basic Java Syntax

COMP 401, Fall 2014
Lecture 2
8/21/2014

AverageHeightApp — take 2

 Same as before, but with Eclipse.
— Eclipse Workspace
— Creating new project
— Creating a new package
— Creating new class

Comments

* Single line comments:

// This is a comment.
 Multiple line comments:

/ *

All of these lines.

Are commented.

*/

A Word About Types

Value Types Reference Types

* Integers * String

 Real numbers * Array

* Booleans * Objects typed by their class
* Character * Classes themselves

Values types are defined entirely by their value.

Reference types are structures in memory.
e Address in memory uniquely identifies them.
* The “value” of a variable that holds a reference
type is this address.

Value Types

Integers
— byte, short, int, long
— Differenceisinsize (1, 2, 4, or 8 bytes)
— No “unsigned” version
— Decimal (255), hexidecimal (0xff), and binary (0b11111111) literal formats

Real Numbers
— float, double

— Difference is in precision.

Characters
— char
— Characters in Java are 16-bit Unicode values
— Literals use single-quote: ¢’
— Non-printable escape sequence: ‘\u#t###’ where # is hex digit.
* Example: \uOOF1’ for fi
Logical
— boolean
— Literals are true and false

Packages, classes, and methods, oh my!

A package is a collection of classes.
— Defined by a “package” statement at the beginning of a source code file.
 Example:
package lec02.ex01;
» All classes defined in the file belong to that package.
A class is a collection of functions (for now).

— Defined by “class” keyword followed by a block of code delimited by curly
braces.

— Example:

public class {
/* Class definition. */

}
A method is just another name for a function or procedure and is a named
sequence of Java statements.

— Defined within a class.

— Can be “called”, or “invoked” with parameters

— Syntax: a method header or signature followed by a block of code delimited by
curly braces.

Method Sighature

Almost everything you need to know about a method is in
Its sighature.

— 5 parts to a method signature

* Access modifier

— public, private, protected

— If unspecified, then “package” access.
Method type

— static or default (i.e., not specified)

— The keyword static indicates that this is a “class method”.

— If the keyword static is not present, then this is an “instance method”.
Return type

— The type of value returned by the method as a result.

— If there is no result, then this is indicated by the keyword void.

Method name

— Must start with a letter, S, or _

— Can contain letters, numbers, S, or _ (no spaces or other punctuation)
Parameter list

— In parenthesis, comma-separated list of parameter typed variable names.

» If the method has no parameters, then just: ()
— Each parameter variable name is preceded by a type declaration.

Method Signature Examples
public static void main(String[] args)
int foo (int a, MyType b, double c)
protected static void bar()
static String toUpperCase(String s)

static private Secret my secret()

Until we know a little more...

e All of the methods in my examples today are
going to be public class methods.
— This means their signatures will include the words:
* public
* static

Inside a method

 The body of a method is a sequence of statements.
* A statement ends in a semi-colon

— Types of statements:
e Declarations of local variables
* Assignment
e Conditional
* Loop
 Method call
* Return statement

 Blocks

— Zero or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa

Inside a method

 The body of a method is a sequence of statements.

e A statement ends in a semi-colon

— Types of statements:
* Declaration of local variables
* Assignment
e Conditional
* Loop
 Method call
* Return statement

e Statement Blocks
— One or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa

Local variable declaration

* Syntax:
type name;
type namel, name2, name3;
type name = value;

* Alocal variable is valid within the block of
statements where the declaration occurs.
— This is known as the scope of the variable.

— The declaration must occur before the variable is
used.

e Parameter names are local variables that are in
scope for the entire method body.

Variable Names

Variable names should start with a letter and can contain
letters, digits, S, or _

— Can not start with digit

— Can not contain whitespace or punctuation other than S or _
* In general, use of punctuation in variable names is discouraged.

— Case sensitive

— Can not be a keyword

Legal:

— foo, bar, a_variable, var123

Legal but not considered good:

— var_with_S, badness

lllegal:

— 1var, while, break, this has whitespace

Inside a method

 The body of a method is a sequence of statements.
* A statement ends in a semi-colon

— Types of statements:
e Declarations of local variables
* Assignment
e Conditional
* Loop
 Method call
* Return statement

 Blocks

— Zero or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa

Assignment

Syntax:

variable = expression;
Note: single equals for assignment.

Left hand side must be some sort of variable
that can be assigned.

Expression must produce a value that matches
the type of the variable.

Expressions

* A sequence of symbols that can be evaluated to
produce a value.

— Can be used wherever a value is expected.
* Types of expressions:

— Literal values: 123, ‘c’, “a string”, true
— Variable name: a_variable

— Value retrieved from an array: my_array[3]
— Class/object fields: Math.PI

— Value as a result of a method call: foo()

— Compound expressions formed by applying an
operator: 4+3*2

Operators

Unary: +, -, |, ++, --

Arithmetic: +, -, /, *, %

Relational: ==, I=, >, >=, <, <=

Boolean: &&, | |

Ternary: ?:

— expression ? if true : if false

Bitwise: ~, <<, >>, >>>, &, |, /

Be aware of precedence

— Can be controlled by explicitly grouping with ()

Be aware of context

— Some operators do different things depending on the types of
the values they are applied to.

Assignment and Unary Operators

 Most numeric operators have an “assignment” form.

— Easy syntax for applying the operator to a variable and
assigning the result back to the same variable.

— Examples:
* a+=3//Equivalenttoa=a+3

* b*=4//Equivalenttob=b *4
 Unary operators ++ and —

— Used with integer typed variables to increment and
decrement.
— Usually used as a statement unto itself:
 a++; //Equivalenttoa=a+1;
 b--; //Equivalenttob=b-1;

Importing JAR files into a project

Save JAR file somewhere.
Create a new project in Eclipse.

Right click the src folder in the project and
choose, “Import...”

Choose the type General->Archive and click
Next

Browse for and select the JAR file.
Click Finish

lec02.ex2.Example?2

Variable declarations for value types
Integer math vs. Real math

Ternary operator

Operator precedence

Boolean operator shortcut

Inside a method

 The body of a method is a sequence of statements.
* A statement ends in a semi-colon

— Types of statements:
* Variable declaration
* Assignment
e Conditional
* Loop
 Method call
* Return statement

* Blocks
— Zero or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa

Conditional Execution: if-else if-else
1f (expression) {
block

} else 1f (expression) {
block

} else {
block

if example

1f (score > 90) {
System.out.println(“You
} else 1if (score > 80) {
System.out.println(“You
} else 1if (score > 70) {
System.out.println(“You
} else 1if (score > 60) {
System.out.println(“You
} else {
System.out.println(“You

}

got an A!");
got a B.");
got a C?");
got a D :=(");

failed”);

Conditional Execution: switch

switch (expression) { ¢ Works with basic

case value: value data types
statements * Works with String as
break : of Java 7
4

e Execution starts at

case value: first matching case
statements value
break; e or default if
.« e provided and no
default: case matches
statements e Continues until break
) statement or end of

switch.

Switch Example

switch (c) {

case 'a':

case 'e’

case '1i'

case 'O

case 'u':
System.out.println("Vowel");
break;

default:

System.out.println("Consonant");

Note

* This is where | ended up stopping in lecture.
The remaining slides have been copied as the
beginning of the next lecture.

lec02.ex3.Example3

if and switch demo
Variables scoped within block
Style hint:

— Don’t test boolean expression against true/false

Testing real numbers with epsilon bounds

Inside a method

 The body of a method is a sequence of statements.
* A statement ends in a semi-colon

— Types of statements:
* Variable declaration
* Assignment
e Conditional
* Loop
 Method call
* Return statement

* Blocks
— Zero or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa

Loops: while

while (expression) {
block

}

do {
block
} while (expression);

while example

int sum = 0;

int n = 1;

while (n < 11) {
sum += n;
n++;

}
System.out.println(“The

sum of 1 to 10 is:

“ + sum);

Loops: for

for (init; test; update) {
block
}

for example

int sum = 0;
for(int n=1; n<ll; n++) {
sum += n;

}

System.out.println(“The sum of 1 to 10 is: “ + sum);

* Note that variable n is declared as part of init
expression in for loop.

— This is a common programming idiom if loop variable
is only needed for the loop.

— Scope of variable is limited to the loop block.

Loop odds and ends

* To skip to next iteration of loop body use
“continue” statement.

* To break out of the loop body use “break”
statement.

Example

while and for

while and for equivalence
scope of for loop variable
break / continue

Inside a method

 The body of a method is a sequence of statements.
* A statement ends in a semi-colon

— Types of statements:
* Variable declaration
* Assignment
e Conditional
* Loop
 Method call
* Return statement

 Blocks

— Zero or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa

Calling Methods

Calling a class method defined in the same class:
methodName (parameters) ;

Calling a class method defined in a different class (same package):
ClassName.methodName (parameters) ;

Calling a class method defined in a different package:
PackageName.ClassName.methodName (parameters)

In the above “parameters” is a comma separated list of values.
— A value can be also be an expression that results in a value.
— Must match in number and type according to method’s signature.

A method call that returns a value (i.e., not a “void” method) can be
part of an expression.
int max times min = max(a, b, c¢) * min(a, b, c);

Inside a method

 The body of a method is a sequence of statements.
* A statement ends in a semi-colon

— Types of statements:
* Variable declaration
* Assignment
e Conditional
* Loop
 Method call
* Return statement

 Blocks

— Zero or more statements enclosed in curly braces { }

— Allowed anywhere a single statement is allowed.
* And vice versa

Return

* Syntax:

return expression;

* Ends execution of a method and returns the
value of the expression as the result of the
method.

— Must match type declared in method sighature.
— If method return type is “void”, then simply:

return;

lec02.ex5.Example5

Calling methods

Compound expressions as part of method call
to provide parameter value.

Returning from middle of method
Unreachable code error

Calling method in same/different class, same/
different package

Import Directive

* Maps class names from other packages into
current name space.

— Convenient if going to use one or more class
names repeatedly.

 Map all names from a package:
import package.*;
* Map a specific name from a package:

import package.name;

Example50therRevisited

* import
* Math revisited

— Classes in java.lang package are automatically
imported.

