Encapsulation

COMP 401, Fall 2014
Lecture 06
9/4/2014



Picking up from last time...

* Abstraction
— Defining a class to represent an abstraction
— Instance fields hold object state

— Instance methods define functions / procedures
associated with the abstraction



Motivating Encapsulation

* Consider lec6.v1
 What’s the danger?



Principle of Encapsulation

* Do not expose the internal state of an object directly.

— Protects object fields from being put into an inconsistent or
erroneous state.
— Avoids situation in which external code is dependent on this
specific implementation.
* Or said another way: allows for the implementation of an abstraction
to be improved/changed without breaking other code.
e Separate “exposed” behavior from “internal” behavior

— Exposed behavior
* Procedures / functions other objects / code expected to interact with.

— Internal behavior
* Procedures / functions defined only for use by methods that are part

of the class.



Encapsulation In Practice

Part 1: Do Not Expose Internal State

Make all fields private
— Amend field declaration with “private” access modifier.

Provide public methods that retrieve and/or alter
properties

— Methods that retrieves a property is called a “getter”.
— Methods that set a property is called a “setter”

Benefits

— Can support “read-only” fields by NOT providing a setter

— Setter can validate new value to prevent misuse or illegal
values.

— Can define derived or complex properties that are actually
related to multiple field values.



JavaBeans Conventions

* JavaBeans

— Software engineering framework
* Associated tools

— Relies on code following certain conventions
* In particular, getters and setters for object properties.
* Given type T and property P:

— Signature of a getter:
public T getP()

— Signature of a setter:
public void setP(T value)



lec6.v2

* Provides getters for x and y values of a Point,
but not setters.

— Ensures Point is immutable

* Provides getters and setters for point of a
Triangle

* Notice effect on original code in main method
In LecbEx1.java



Setter Validation

e Setters should validate their values if possible.
— One of the advantages of providing access to
properties only through methods.
* lllegal / improper values should cause a
runtime exception like this:

throw new RuntimeException(“Explanation string”);



lec6.v3

Adds equals method to Point for comparison.
setA(), setB(), and setC() in Triangle validate
by...

— making sure that points are distinct

— checking for co-linearity

Added area() method

Added check colinearity() method

— Notice that I've chosen a specific precision for the
check based on area.




Derived Properties

* Property that is a combination or transformation
of object state fields.
— Can you recognize two of these already in Triangle?

 Same principle for getters and setters applies

here.

— If using JavaBeans conventions, name methods with
proper form and signature.

— Read-only properties should not have a setter.
— Setters should validate if necessary.



lec6.v4

* Changed area() and perimeter() to getAreal)
and getPerimeter() to follow JavaBeans
conventions.

— What about individual side lengths?

* Could have done the same, but didn’t to make another
point later on.

* Created getPoints() and setPoints() as derived
properties for dealing with all three points at
once as an array.



Using Fields Internally

 Marking a field as “private” prevents access from code
outside of the class.

— But notice that there is no restriction to access private fields
between different instances.

— Look at distanceTo() and equals() methods in Point

* Does this violate principle of encapsulation?

— Gray area
e Could argue no since code is within the class.

* Could argue yes since access to other point’s state is outside the
context of the this reference.

— My advice
* Always safe to use exposed getter / setter, so do so.

* There are sometimes good reasons not to, but generally these are
related to issues of performance and optimization.



lec6.v5

* Re-wrote distanceTo() and equals() using
getters for x and y values



Encapsulation In Practice
Part 2: Separate Exposed Behavior

* Define an “interface” for all exposed behavior

— In Java, an interface is like a contract.

* Indicates that a certain set of public methods are
available.

* One or more classes can indicate that they implement
the interface.

— Name of interface can be used as a type name
* Just like class names are used as type names.

e Value of an interface type variable can be set to any
object that is an instance of a class that implements the
interface.



Interfaces in Java

* Like classes, should go in their own .java file
— Should have same name as file

— Body of interface is a just list of method signatures.
* Implementing classes MUST declare these methods as public

* Form:

interface InterfaceName {
type methodl (parameters);
type method2 (parameters);
// etc..

}
* Classes specify which interfaces they implement with

“implements” modifier as in:
class ClassName implements InterfaceA, InferfaceB {



Interface Naming Conventions

Interface name must be different from class names
that implement the interface.
Convention A

— Start all interface names with
* For example: ITriangle, Ipoint

— Class names can be anything that is not in this form.
Convention B
— Use generic abstraction name for interface.

— Make class names descriptive of implementation

* If no natural way to do this, simply append “Impl” to generic
abstraction name to differentiate.

Personally, | generally go with convention B.

IIIH

for interface.



lec6. v6

e Separates Point into an interface and an
implementing class.

— Notice that distanceTo() and equals() are part of
behavior | want the abstraction to expose.

* Notice that main method uses variables with type
Point (the interface name), but that the actual

object is created as an instance of a specific class
that implements the interface Point.

* Notice that Triangle only interacts with the
methods specified in the Point interface.



Advantage of Encapsulation

* Can provide different implementations of the
same behavior
— lec6.v7

* Create a new implementation of Point based on polar
coordinates.



Exposed vs Internal Behavior

* Exposed behavior should be reflected in the
interface(s) that a class implements

— Recall that any method declared in an interface

must be defined by an implementing class as a
public method.

* Internal behavior should be hidden

— Use private modifier on these methods to ensure
that access only occurs within the class



lec6.v8

* Continued application of encapsulation
principle to Triangle by...
— ... defining Triangle as an interface

— ... rewriting what used to be the class Triangle as
the class PointTriangle that implements the
interface

— ... hiding internal behaviors as private methods



