
Part III

Complex Queries

and Reasoning

The importance of complex queries in advanced database systems can-

not be overstated. At the introduction of the relational model, powerful

logic-based queries were primarily motivated by their importance for end

users. Subsequently, a long experience with SQL and large-scale commer-

cial applications has shown that powerful query languages are essential in

modern databases that use distributed environments, parallel machines, and

client/server architectures.

Since support for complex queries means support for complex reasoning

on large databases, this line of database work is also tackling problems previ-

ously addressed in research domains, such as knowledge representation, non-

monotonic reasoning, and expert systems. The next three chapters provide

a uni�ed introduction to the complex �eld of database and knowledge-based

systems. In Chapter 8, we revisit relational query languages and extend

them with more powerful constructs such as recursion, complex objects, and

exible set aggregates. In Chapter 9, we discuss the implementation of these

extended queries in deductive databases and SQL systems. Finally, in Chap-

ter 10, we explore recent advances in nonmonotonic reasoning that provide a

uni�ed model for temporal reasoning, active databases, and nondeterministic

queries.
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Chapter 8

The Logic of Query

Languages

First-order logic provides a conceptual foundation for relational query lan-

guages. This foundation was established from the very �rst introduction

of the relational data model by E. F. Codd, who introduced the parallel

notions of relational calculus and relational algebra. Relational calculus

provides a logic-based model for declarative query languages; relational al-

gebra provides its operational equivalent: safe queries in predicate calculus

can be transformed into equivalent relational expressions, and vice versa.

The transformation of a calculus expression into an equivalent relational al-

gebra expression represents the �rst step in e�cient query implementation

and optimization.

However, relational calculus has limited expressive power and cannot

express many important queries, such as transitive closures and generalized

aggregates. This situation has led to the design of more powerful logic-based

languages that subsume relational calculus. First among these is the rule-

based language Datalog, which is the focus of a large body of research and

also of this chapter.

8.1 Datalog

In a Datalog representation, the database is viewed as a set of facts, one

fact for each tuple in the corresponding table of the relational database,

where the name of the relation becomes the predicate name of the fact. For

instance, the facts in Example 8.2 correspond to the relational database of

Example 8.1.
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Example 8.1 A relational database about students and the courses

they took

student

Name Major Year

Joe Doe cs senior

Jim Jones cs junior

Jim Black ee junior

took

Name Course Grade

Joe Doe cs123 2.7

Jim Jones cs101 3.0

Jim Jones cs143 3.3

Jim Black cs143 3.3

Jim Black cs101 2.7

Example 8.2 The Datalog equivalent of Example 8.1

student('Joe Doe'; cs; senior):

student('Jim Jones'; cs; junior):

student('Jim Black'; ee; junior):

took('Joe Doe'; cs123; 2:7):

took('Jim Jones'; cs101; 3:0):

took('Jim Jones'; cs143; 3:3):

took('JimBlack'; cs143; 3:3):

took('JimBlack'; cs101; 2:7):

A fact is a logical predicate having only constants (i.e., no variables) as

its arguments. We will use the accepted convention of denoting constants

by tokens that begin with lowercase characters or numbers, while denoting

variables by tokens that begin with uppercase. Thus, in a predicate such as

took(Name, cs143, Grade)

Name and Grade denote variables, while cs143 denotes a constant. However,

tokens in quotes, such as =qt7Jim Black=qt7, denote constants. Also, Name,

cs143, and Grade are, respectively, the �rst, second, and third argument

of the ternary predicate took. Both student and took are three-argument

predicates, or equivalently, ternary predicates, or predicates with arity 3.

Rules constitute the main construct of Datalog programs. For instance,

Example 8.3 de�nes all students at the junior level who have taken cs101 and

cs143. Thus, firstreq(Name) is the head; student(Name, Major, junior),

took(Name, cs101, Grade1), and took(Name, cs143, Grade2) are, re-

spectively, the �rst, second, and third goal of the rule. Together, these three

goals form the body of the rule.
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Example 8.3 Find the name of junior-level students who have

taken both cs101 and cs143

firstreq(Name) student(Name; Major; junior);

took(Name; cs101; Grade1);

took(Name; cs143; Grade2):

The commas separating the goals stand for logical conjuncts. Therefore,

the order in which the goals appear in the rule is immaterial. Since the

commas separating the goals stand for logical AND, the symbols \^" and

\&" are often used in their place. Another common notational variation is

the use of the symbol \:-" instead of the arrow to separate the head from

the body of the rule.

A logical disjunct is represented via multiple rules with the same head

predicate (i.e., sharing the same predicate name and arity). Thus, to �nd

those juniors who took either course cs131 or course cs151, with grade better

than 3.0, we would write the following:

Example 8.4 Junior-level students who took course cs131 or course

cs151 with grade better than 3.0

scndreq(Name) took(Name; cs131; Grade); Grade> 3:0;

student(Name; Major; junior):

scndreq(Name) took(Name; cs151; Grade); Grade> 3:0;

student(Name; ; junior):

Observe that in the �rst rule of Example 8.4, the variable Major occurs

only once; therefore, it can be replaced with the symbol \ ", which is called

an anonymous variable, and stands for a uniquely named variable that does

not appear anywhere else in the rule (see the second rule of Example 8.4).

The set of rules having as their heads a predicate with the same name p

is called the de�nition of p. Thus, the de�nition of a derived predicate

is similar to the de�nition of a virtual view in relational databases. The

meaning of such a de�nition is independent of the order in which these

rules are listed, and independent of the order in which the goals appear in

the rules. Table 8.1 displays the corresponding nomenclatures of Datalog

and the relational model. Therefore, base predicates correspond to database

relations and are de�ned by the database schema, while derived predicates

are de�ned by rules. It is also common to use the terms extensional database

and intensional database to refer to base predicates and derived predicates,

respectively. In deductive databases, the assumption normally made is that

these two form disjoint sets: that is, base predicates never appear in the

heads of rules.
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166 8. THE LOGIC OF QUERY LANGUAGES

Datalog Relational Model

Base predicate Table or relation

Derived predicate View

Fact Row or tuple

Argument Column or attribute

Table 8.1: The terminology of Datalog versus the relational model

Since rules are merely de�nitional devices, concrete Datalog programs

also contain one or more query goals to specify which of the derived relations

must actually be computed. Query goals can have di�erent forms. A query

that contains no variables is called a boolean query or a closed query; the

answer to such a query is either yes or no. For instance,

?firstreq('Jim Black')

is a closed query with answer yes or no depending on whether 'Jim Black'

has satis�ed the �rst requirement. On the other hand, consider the goal

?firstreq(X)

Since X is a variable, the answer to this query is a (possibly empty) set of

facts for the students who satisfy the �rst requirement, as follows:

firstreq('Jim Jones')

firstreq('Jim Black')

In general, query goals will mix variables and constants in their arguments.

Rules represent a powerful formalism from both theoretical and practical

viewpoints. Their practical appeal follows from the ability to view goals in

rules as search patterns. For instance, in the second rule of Example 8.4, we

are searching for took tuples with cs151 as their second argument, and a

grade greater than 3:0. Also, we are looking for the pattern junior in the

third column of student, where the �rst attribute in this tuple is identical

to the �rst value in the tuple of took, since all occurrences of the same

variable in a rule must be assigned the same value. The scope of variables,

however, is local to rules, and identically named variables in di�erent rules

are considered independent.

The second important bene�t of the Datalog formalism is its ability to

break up the problem into smaller subproblems, each expressed by simple

rules. Thus, complex patterns of computation and logical decisions can be

Advanced Database Systems, Zaniolo, Ceri, Faloutsos, Snodgrass, Subrahmanian and Zicari page 166



8.1. DATALOG 167

achieved through rather simple Datalog rules that are stacked one upon

another in a rich semantic structure.

For instance, say that in order to take the individual-study course cs298,

a junior must have satis�ed both requirements. Then we can simply write

the following:

Example 8.5 Both requirements must be satis�ed to enroll in

cs298

req cs298(Name) firstreq(Name); scndreq(Name):

Therefore, derived relations can be used as goals in rules in the same fashion

as database relations.

Datalog rules discussed so far are nonrecursive rules without negation.

Additional expressive power can be achieved by allowing recursion and nega-

tion in Datalog. We will next discuss negation; we discuss recursion later in

this chapter.

Negation in Datalog rules can only be applied to the goals of the rule.

Negation can never be used in the heads of rules. For instance, in Example

8.6, the second goal of the second rule is negated. This rule is meant to

compute junior students who did not take course cs143.

Example 8.6 Junior-level students who did not take course cs143

hastaken(Name; Course) took(Name; Course; Grade):

lacks cs143(Name) student(Name; ; junior);

:hastaken(Name; cs143):

Thus, hastaken de�nes the courses completed by a student, independent

of the �nal grade. Then, the second rule selects those students for whom the

pattern cs143 does not appear in the second column.

A frequent use of negation is in conjunction with universally quanti�ed

queries that are often expressed by words such as \each" and \every." For

instance, say we would like to express the following query: \�nd the senior

students who completed all requirements for a cs major."

The universally quanti�ed condition \all requirements must be satis�ed"

can only be expressed in Datalog by transforming it into an equivalent con-

dition where universal quanti�cation is replaced by existential quanti�cation

and negation. This transformation normally requires two steps.

The �rst step is that of formulating the complementary query. For the

example at hand, this could be \�nd students who did not take some of the
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courses required for a cs major." This can be expressed using the �rst rule

in Example 8.7. Having derived those senior students who are missing some

required courses, as the second step, we can now reexpress the original query

as \�nd the senior students who are NOT missing any requirement for a cs

major." This corresponds to the second rule in Example 8.7.

Example 8.7 Find the senior students who completed all the re-

quirements for the cs major: ?all req sat(X)

req missing(Name) student(Name; ; senior);

req(cs; Course);

:hastaken(Name; Course):

all req sat(Name) student(Name; ; senior);

:req missing(Name):

Turning a universally quanti�ed query into a doubly negated existen-

tial query is never without di�culty, but this is a skill that can be mastered

with some practice. Indeed, such a transformation is common in natural lan-

guages, particularly in euphemistic nuances. For instance, our last sentence,

\ : : : is never without di�culty," was obtained by rephrasing the original

sentence \ : : : is always di�cult."

8.2 Relational Calculi

Relational calculus comes in two main avors: the domain relational calculus

(DRC) and the tuple relational calculus (TRC). The main di�erence between

the two is that in DRC variables denote values of single attributes, while in

TRC variables denote whole tuples.

For instance, the DRC expression for a query ?firstreq(N) is

f(N) j9G1(took(N; cs101 ; G1)) ^ 9G2(took(N; cs143 ;G2 )) ^

9M(student(N;M; junior)) g

The query ?scndreq(N) can be expressed as follows:

f(N) j 9G;9M(took(N; cs131 ;G) ^G > 3 :0 ^ student(N ;M ; junior)) _

9G;9M(took(N; cs151 ;G) ^G > 3 :0 ^ student(N ;M ; junior))g

There are obvious syntactic di�erences that distinguish DRC from Da-

talog, including the use of set de�nition by abstraction instead of rules.
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Furthermore, DRC formulas contain many additional constructs such as ex-

plicit quanti�ers, nesting of parentheses, and the mixing of conjunctions and

disjunctions in the same formula.

Negation and universal quanti�cation are both allowed in DRC. There-

fore, the query ?all req sat(N) can be expressed either using double nega-

tion, or directly using the universal quanti�er as shown in Example 8.8. This

formula also features the implication sign!, where p! q is just a shorthand

for :p _ q.

Example 8.8 Using a universal quanti�er to �nd the seniors who

completed all cs requirements

f(N)j 9M(student(N;M; senior)) ^

8C(req(cs; C)! 9G(took(N;C;G))g (8.1)

The additional syntactic complexity of DRC does not produce a more

powerful language. In fact, for each domain predicate calculus expression

there is an equivalent, nonrecursive Datalog program. The converse is also

true, since a nonrecursive Datalog program can be mapped into an equivalent

DRC query.

Relational calculus languages are important because they provide a link

to commercial database languages. For instance, Query-By-Example (QBE)

is a visual query language based on DRC. However, languages such as QUEL

and SQL are instead based on TRC.

In TRC, variables range over the tuples of a relation. For instance, the

TRC expression for a query ?firstreq(N) is the following:

Example 8.9 The TRC equivalent of the query ?firstreq(N) in

Example 8.3

f(t[1])j 9u9s(took(t) ^ took(u) ^ student(s) ^ t[2] = cs101 ^

u[2] = cs143 ^ t [1 ] = u[1 ] ^ s[3 ] = junior ^ s[1 ] = t [1 ])g

In Example 8.9, t and s are variables denoting, respectively, tuples in

took and student. Thus, t[1] denotes the �rst component in t (i.e., that

corresponding to attribute Name); t[2] denotes the Course value of this tuple.

In general, if j1; : : : ; jn denote columns of a relation R, and t 2 R, then we

will use the notation t[j1; : : : ; jn] to denote the n-tuple (t[j1]; : : : ; t[jn]).

The main di�erence between DRC and TRC is that TRC requires an

explicit statement of equality, while in DRC equality is denoted implicitly

by the presence of the same variable in di�erent places. For instance, in
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Example 8.9, the explicit conditions t[1] = u[1] and s[1] = t[1] are needed to

express equality joins. Once again, however, these di�erences do not change

the power of the language: TRC and DRC are equivalent, and there are

mappings that transform a formula in one language into an equivalent one

in the other.

8.3 Relational Algebra

Datalog rules and DRC or TRC formulas are declarative logic-based lan-

guages, but relational algebra (RA) is an operator-based language. However,

formulas in logical languages can be implemented by transforming them into

equivalent RA expressions.

The main operators of relational algebra can be summarized as follows:

1. Union. The union of relations R and S, denoted R [ S, is the set of

tuples that are in R, or in S, or in both. Thus, it can be de�ned using

TRC as follows:

R [ S = ftjt 2 R _ t 2 Sg

This operation is de�ned only if R and S have the same number of

columns.

2. Set di�erence. The di�erence of relations R and S, denoted R � S, is

the set of tuples that belong to R but not to S. Thus, it can be de�ned

as follows: (t = r denotes that both t and r have n components and

t[1] = r[1] ^ : : : ^ t[n] = r[n]):

R� S = ftjt 2 R ^ :9r(r 2 S ^ t = r)g

This operation is de�ned only if R and S have the same number of

columns (arity).

3. Cartesian product. The Cartesian product of R and S is denoted R�S.

R�S = ftj(9r 2 R)(9s 2 S)(t[1; : : : ; n] = r^ t[n+1; : : : ; n+m] = s)g

If R has n columns and S has m columns, then R � S contains all

the possible m+n tuples whose �rst m components form a tuple in R

and the last n components form a tuple in S. Thus, R� S has m+ n

columns and jRj � jSj tuples, where jRj and jSj denote the respective

cardinalities of the two relations.
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4. Projection. Let R be a relation with n columns, and L = $1; : : : ; $n

be a list of the columns of R. Let L0 be a sublist of L obtained by

(1) eliminating some of the elements, and (2) reordering the remaining

ones in an arbitrary order. Then, the projection of R on columns L0,

denoted �L0 , is de�ned as follows:

�L0R = fr[L0] j r 2 Rg

5. Selection. �FR denotes the selection on R according to the selection

formula F , where F obeys one of the following patterns:

(i) $i�C, where i is a column of R, � is an arithmetic comparison

operator, and C is a constant, or

(ii) $i�$j, where $i and $j are columns of R, and � is an arithmetic

comparison operator, or

(iii) an expression built from terms such as those described in (i) and

(ii), above, and the logical connectives _; ^; and :.

Then,

�FR = ft j t 2 R ^ F 0
g

where F 0 denotes the formula obtained from F by replacing $i and $j

with t[i] and t[j].

For example, if F is \$2 = $3^$1 = bob", then F 0 is \t[2] = t[3]^t[1] =

bob". Thus �$2=$3^$1=bobR = ft j t 2 R ^ t[2] = t[3] ^ t[1] = bobg:

Additional operators of frequent use that can be derived from these are

discussed next.

The join operator can be constructed using Cartesian product and se-

lection. In general, a join has the following form: R 1F S, where F =

$i1�1$j1 ^ : : : ^ ik�k$jk; i1; : : : ; ik are columns of R; j1; : : : ; ik are columns

of S; and �1; : : : ; �k are comparison operators. Then, if R has arity m, we

de�ne F 0 = $i1�1$(m+ j1) ^ : : : ^ $ik�k$(m+ jk). Therefore,

R 1F S = �F 0(R� S)

The intersection of two relations can be constructed either by taking

the equijoin of the two relations in every column (and then projecting out

duplicate columns) or by using the following property: R\S = R�(R�S) =

S � (S �R).
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The generalized projection of a relation R is denoted �L(R), where L is

a list of column numbers and constants. Unlike ordinary projection, compo-

nents might appear more than once, and constants as components of the list

L are permitted (e.g., �$1;c;$1 is a valid generalized projection). Generalized

projection can be derived from the other operators (see Exercise 8.6).

8.4 From Safe Datalog to Relational Algebra

Relational algebra provides a very attractive operational target language

onto which the logic-based queries can be mapped. However, only safe Da-

talog programs can be mapped into equivalent relational algebra expressions.

From a practical viewpoint, this is hardly a limitation, since enforcing the

safety requirement on programs enables the compiler-time detection of rules

and queries that are inadequately speci�ed.

For instance, to �nd grades better than the grade Joe Doe got in cs143,

a user might write the following rule:

bettergrade(G1) took(0Joe Doe
0
; cs143; G); G1 > G:

This rule presents the following peculiar traits:

1. In�nite answers. Assuming that, say, Joe Doe got the grade of 3:3

(i.e., B+) in course cs143 then there are in�nitely many numbers that

satisfy the condition of being greater than 3:3.

2. Lack of domain independence. A query formula is said to be domain

independent when its answer only depends on the database and the con-

stants in the query, and not on the domain of interpretation. Clearly,

the set of values for G1 satisfying the rule above depends on what do-

main we assume for numbers (e.g., integer, rational, or real). Thus,

there is no domain independence.

3. No relational algebra equivalent. Only database relations are allowed

as operands of relational algebra expressions. These relations are �nite,

and so is the result of every RA expression over these relations. There-

fore, there cannot be any RA expression over the database relations

that is equivalent to the rule above.

In practical languages, it is desirable to allow only safe formulas, which

avoid the problems of in�nite answers and loss of domain independence. Un-

fortunately, the problems of domain independence and �niteness of answers
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are undecidable even for nonrecursive queries. Therefore, necessary and suf-

�cient syntactic conditions that characterize safe formulas cannot be given

in general. In practice, therefore, we must use su�cient conditions (i.e.,

conditions that once satis�ed ensure domain independence and �niteness of

the answers), although such properties might also be satis�ed by formulas

that do not obey those conditions. A set of simple su�cient conditions for

the safety of Datalog programs is presented next.

De�nition 8.1 Safe Datalog. The following is an inductive de�nition of

safety for a program P :

1. Safe predicates: A predicate q of P is safe if

(i) q is a database predicate, or

(ii) every rule de�ning q is safe.

2. Safe variables: A variable X in rule r is safe if

(i) X is contained in some positive goal q(t1; : : : ; tn), where the predi-

cate q(A1; : : : ; An) is safe, or

(ii) r contains some equality goal X = Y , where Y is safe.

3. Safe rules: A rule r is safe if all its variables are safe.

4. The goal ?q(t1; : : : ; tn) is safe when the predicate q(A1; : : : ; An) is safe.

For every safe Datalog program, there is an equivalent relational algebra

expression, generated using the following algorithm:

Algorithm 8.2 Mapping a safe, nonrecursive Datalog program P into RA

step 1. P is transformed into an equivalent program P
0 that does

not contain any equality goal by replacing equals with equals

and removing the equality goals. For example,

r : s(Z; b; W) q(X; X; Y); p(Y; Z; a); W = Z; W > 24:3 :

is translated into

r : s(Z; b; Z) q(X; X; Y); p(Y; Z; a); Z > 24:3 :
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step 2. The body of a rule r is translated into the RA expression

Bodyr. Bodyr consists of the Cartesian product of all the

base or derived relations in the body, followed by a selec-

tion �F , where F is the conjunction of the following con-

ditions: (i) inequality conditions for each such goal (e.g.,

Z > 24:3), (ii) equality conditions between columns contain-

ing the same variable, and (iii) equality conditions between

a column and the constant occurring in such a column.

For the example at hand, (i) the condition Z > 24:3 trans-

lates into the selection condition $5 > 24:3, while (ii) the

equality between the two occurrences of X translates into

$1 = $2, while the equality between the two Y s maps into

$3 = $4, and (iii) the constant in the last column of p maps

into $6 = a. Thus we obtain:

Bodyr = �$1=$2;$3=$4;$6=a;$5>24:3(Q� P )

step 3. Each rule r is translated into a generalized projection on

Bodyr, according to the patterns in the head of r. For the

rule at hand, we obtain:

S = �$5;b;$5Bodyr

step 4. Multiple rules with the same head are translated into the

union of their equivalent expressions.

The mapping just described can be generalized to translate rules with

negated goals, as described next. Say that the body of some rule contains a

negated goal, such as the following body:

r : : : : b1(a; Y); b2(Y);:b3(Y):

Then we consider a positive body, that is, one constructed by dropping

the negated goal,

rp : : : : b1(a; Y); b2(Y):

and a negative body, that is, one obtained by removing the negation sign

from the negated goal,

rn : : : : b1(a; Y); b2(Y); b3(Y):

The two bodies so generated are safe and contain no negation, so we can

transform them into equivalent relational algebra expressions as per step 2

of Algorithm 8.2; let Bodyrp and Bodyrn be the RA expressions so obtained.
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Then the body expression to be used in step 3 of said algorithm is simply

Bodyr = Bodyrp �Bodyrn.

Finally, observe that by repeating this mapping for each negated goal in

the rule we can translate rules with several negated goals. Therefore, we can

state the following:

Theorem 8.3 Let P be a safe Datalog program without recursion or func-

tion symbols. Then, for each predicate in P , there exists an equivalent rela-

tional algebra expression.

Safety conditions similar to those described for Datalog can also be gen-

erated for DRC and TRC formulas. Thus, safe formulas in each language

can be translated into RA, and vice versa (see Exercise 8.9).

The safety conditions used here can be relaxed in several ways to improve

the exibility and ease-of-use of the language. One such extension, discussed

in the next chapter, achieves safety by using bindings that are passed in a

top-down fashion. Another important extension is to allow the negated

goals in a rule to contain existential variables, that is, variables that do not

appear anywhere else in the rule. For instance, to express the query \�nd

all senior students that did not take cs143," we might write the �rst rule in

the following example:

Example 8.10 Two equivalent uses of negation

student(Nme; Yr) student(Nme; cs; Yr);:took(Nme; cs143; G):

project took(Nme; cs143) took(Nme; cs143; G):

student(Nme; Yr) student(Nme; cs; Yr);

:project took(Nme; cs143):

The �rst rule in Example 8.10, where G does not appear in any positive

goal, will be viewed as a convenient shorthand for the other two rules in

the same example, which are safe by our previous de�nition. These last two

rules, therefore, de�ne the meaning and the RA equivalent of the �rst rule.

8.4.1 Commercial Query Languages

Relational query languages represent the results of protracted e�orts to sim-

plify the DRC and TRC and make them more user-friendly. For instance,

QBE is generally regarded as a very attractive rendering of DRC. Instead,

languages such as QUEL and SQL are derived from TRC via simple syn-

tactic modi�cations. The main modi�cation consists of ensuring that every

Advanced Database Systems, Zaniolo, Ceri, Faloutsos, Snodgrass, Subrahmanian and Zicari page 175



176 8. THE LOGIC OF QUERY LANGUAGES

tuple variable is range quanti�ed; that is, it is explicitly associated with a

relation over which it ranges, thus ensuring the safety of the resulting TRC

expressions. For instance, the query of Example 8.9 can be rearranged as

follows:

Example 8.11 A range-quanti�ed version of Example 8.9

f(t[1])j (8.2)

t 2 took 9u 2 took 9s 2 student (8.3)

(t[2]=cs101 ^ u[2]=cs143 ^ t[1]=u[1] ^

s[3] = junior ^ s[1] = t[1])g (8.4)

Thus, t and u range over took, while s ranges over student. Then

our TRC query consists of three parts: (1) a target-list (8.2), (2) tuple

range declaration (8.3), and (3) the conditions (8.4). These are, respectively,

mapped into the three basic parts of the SQL query: (1) the SELECT part,

(2) the FROM part, and (3) the WHERE part. Also, if t 2 R, and Name

is the name of the jth column of R, then the notation t.Name denotes t[j].

Therefore, from Example 8.11, we obtain the SQL query of Example 8.12:

Example 8.12 The SQL translation of Example 8.11

SELECT t.Name

FROM took t, took u, student s

WHERE t.Course= 'cs101' AND

u.Course= 'cs143' AND

t.Name = u.Name AND

s.Year = 'junior' AND

s.Name = t.Name

While the need for explicit quanti�ers was eliminated in SQL through

the use of the FROM clause, EXISTS and ALL are allowed in nested SQL

queries. However, the query from Example 8.7 (\�nd the seniors who satis-

�ed all requirements for a cs degree") cannot be expressed using ALL, but

must instead be expressed using double negation and existential quanti�ers

as shown in Example 8.13.

Indeed, while SQL supports the construct ALL, various syntactic restric-

tions limit its applicability to the point that it cannot be used to express

universal quanti�cation in many queries, including the current one. In fact,

with the exception of set aggregates, the many additional constructs clut-

tering SQL do not extend the expressive power of the language beyond that

of relational algebra or nonrecursive Datalog rules. Therefore, the current
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Example 8.13 Find senior students where there is no required cs

course our senior has not taken

SELECT Name

FROM student

WHERE Year = 'senior' AND Name NOT IN

(SELECT s.Name

FROM student s, req r

WHERE r.Major = 'cs' AND s.Year = 'senior' AND

NOT EXISTS

(SELECT t.*

FROM took t

WHERE t.Course=r.Course AND

t.Name = s.Name

)

)

practice in developing database applications is to rely on procedural lan-

guages, with embedded SQL subqueries. The interface between the proce-

dural language and SQL must overcome an impedance mismatch, that is, a

mismatch between their respective data types and computational paradigms.

More powerful query languages are expected to ameliorate these problems

because they allow a larger portion of the application to be developed in

the database query language. Better data independence and distributed

processing are also expected as a result.

In the sections that follow, we will investigate the design of more powerful

database query languages, building on Datalog, which, in terms of syntax

and semantics, provides a better formal vehicle for such study than SQL

and other languages presented so far. This e�ort will lead to (1) the design

of logic-based rule languages similar to Datalog, which have been proven

e�ective in the development of advanced data-intensive applications, and

(2) the design of SQL extensions that signi�cantly enhance its power as a

relational query language.

8.5 Recursive Rules

Bill of materials (BoM) problems are related to assemblies containing super-

parts composed of subparts that are eventually composed of basic parts.

Consider Example 8.14. The base predicate assembly(Part, Subpart,

Qty) in the parts database contains parts, their immediate subparts, and

the quantity of subparts needed to assemble the part. The base predicate

part cost(BasicPart, Supplier, Cost, Time) describes the basic parts,
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Example 8.14 Relational tables for a BoM application

part cost

BASIC PART SUPPLIER COST TIME

top tube cinelli 20.00 14

top tube columbus 15.00 6

down tube columbus 10.00 6

head tube cinelli 20.00 14

head tube columbus 15.00 6

seat mast cinelli 20.00 6

seat mast cinelli 15.00 14

seat stay cinelli 15.00 14

seat stay columbus 10.00 6

chain stay columbus 10.00 6

fork cinelli 40.00 14

fork columbus 30.00 6

spoke campagnolo 0.60 15

nipple mavic 0.10 3

hub campagnolo 31.00 5

hub suntour 18.00 14

rim mavic 50.00 3

rim araya 70.00 1

assembly

PART SUBPART QTY

bike frame 1

bike wheel 2

frame top tube 1

frame down tube 1

frame head tube 1

frame seat mast 1

frame seat stay 2

frame chain stay 2

frame fork 1

wheel spoke 36

wheel nipple 36

wheel rim 1

wheel hub 1

wheel tire 1

that is, parts bought from external suppliers rather than assembled inter-

nally. This relation describes the suppliers of each part, and for each supplier

the price charged for it and time needed to deliver it.

Assume now that we want to �nd all the subparts of a given part|not

just immediate subparts. Then recursive rules, such as those in Example

8.15, are needed to express this transitive closure query. The second rule in

Example 8.15 inductively de�nes the transitive closure of all subparts; this

rule is recursive since the head predicate also appears in the body of the

rule.

A nonrecursive rule de�ning a recursive predicate, such as the �rst rule

in Example 8.15, is called an exit rule. Thus, an exit rule provides the base

case in the inductive de�nition of a recursive predicate.

Example 8.15 All subparts: a transitive closure query

all subparts(Part; Sub) assembly(Part; Sub; ):

all subparts(Part; Sub2) all subparts(Part; Sub1);

assembly(Sub1; Sub2; ):
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Once we view assembly(Sub1; Sub2; ) as de�ning an arc from Sub1 to

Sub2, we see that we are basically computing the transitive closure of a

graph. Transitive closure computations and its variations are very common

in actual applications. Queries involving aggregates are common in BoM

applications. For instance, say that a user needs to compute how long it

takes to obtain all the basic subparts of an assembly part. (Assuming that

the actual assembly time is negligible, this will allow us to estimate how

soon an order can be �lled.) Then, we can begin with rules that de�ne basic

subparts as follows:

Example 8.16 For each part, basic or otherwise, �nd its basic

subparts (a basic part is a subpart of itself)

basic subparts(BasicP; BasicP) part cost(BasicP; ; ; ):

basic subparts(Prt; BasicP) assembly(Prt; SubP; );

basic subparts(SubP; BasicP):

Now, we want to �nd the absolutely shortest time in which we can obtain

a basic part, given that the time for delivery might be a function of supplier

or even the price charged (fast deliveries might command a premium price).

The least-time condition can be expressed using negation, by requiring that

there is no faster time for this part.

Example 8.17 For each basic part, �nd the least time needed for

delivery

fastest(Part; Time) part cost(Part; Sup; Cost; Time);

:faster(Part; Time):

faster(Part; Time) part cost(Part; Sup; Cost; Time);

part cost(Part; Sup1; Cost1; Time1);

Time1 < Time:

Then, by combining the last two examples, we can build for each part

the list of its basic components, with each component listed with the least

time required to get that component.

Example 8.18 Times required for basic subparts of the given as-

sembly

timeForbasic(AssPart; BasicSub; Time) 

basic subparts(AssPart; BasicSub);

fastest(BasicSub; Time):
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Thus, the time required to have all the basic parts of a given part is just

the longest time required for any such part.

Example 8.19 The maximum time required for basic subparts of

the given assembly

howsoon(AssPart; Time) timeForbasic(AssPart; ; Time);

:larger(AssPart; Time):

larger(Part; Time) timeForbasic(Part; ; Time);

timeForbasic(Part; ; Time1);

Time1 > Time:

Another family of queries of interest are set aggregates. As seen in Exam-

ples 8.17 and 8.19, nonrecursive Datalog with negation can express min and

max. Other aggregates, such as count or sum, require strati�ed Datalog with

arithmetic. However, counting the elements in a set modulo an integer does

not require arithmetic. The program in Example 8.20 determines whether a

given base relation br(X) contains an even number of elements (i.e., counts

the cardinality of this relation mod 2). The next predicate in the example

sorts the elements of br into an ascending chain, where the �rst link of the

chain connects the distinguished node nil to the least element in br (third

rule in the example).

Example 8.20 The parity query

between(X; Z) br(X); br(Y); br(Z); X < Y; Y < Z:

next(X; Y) br(X); br(Y); X < Y;:between(X; Y):

next(nil; X) br(X);:smaller(X):

smaller(X) br(X); br(Y); Y < X:

even(nil):

even(Y) odd(X); next(X; Y):

odd(Y) even(X); next(X; Y):

br is even even(X);:next(X; Y):

Observe that Example 8.20 relies on the assumption that the elements

of br are totally ordered by >, and can therefore be visited one at a time

using this order.

8.6 Strati�cation

The predicate dependency graph for a program P is denoted pdg(P ) and is

de�ned as follows:
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howsoon br_is_even

even odd

next

between smaller

br<

larger

timeForbasic

fastest

faster

basic_subpart

part_costassembly

Figure 8.1: Predicate dependency graphs for the BoM query and the parity query

De�nition 8.4 The predicate dependency graph for a program P is a graph

having as nodes the names of the predicates in P . The graph contains an

arc g ! b if there exists a rule r where g is the name of some goal of r and

h is the name of the head of r. If the goal is negated, then the arc is marked

as a negative arc.

The nodes and arcs of the strong components of pdg(P ), respectively,

identify the recursive predicates and recursive rules of P . Let r be a rule

de�ning a recursive predicate p. The number of goals in r that are mutually

recursive with p will be called the rank of r.

If rank(r) = 0, then r is an exit rule; otherwise, it is a recursive rule.

A recursive rule r is called linear when rank(r) = 1; it is called nonlinear

when rank(r) > 1. Rules with rank 2 and 3 are also called quadratic rules

and cubic rules, respectively.

For the BoM program de�ned by Examples 8.16{8.19, the only recursive

predicate is basic subparts and is identi�ed by a loop in the left graph

of Figure 8.1. The predicate dependency graph for the parity query pro-

gram, also shown in Figure 8.1, has a strong component having as nodes the

mutually recursive predicates even and odd.
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Observe that in Figure 8.1 no arc marked with negation belongs to a

strong component of the graph (a directed cycle). Under this situation the

program is said to be strati�able. As discussed in later chapters, programs

that are strati�able have a clear meaning, but programs that are not strati-

�able are often ill de�ned from a semantic viewpoint. In fact, when an arc

in a strong component of pdg(P ) is marked with negation, then P contains

a rule where a predicate p is de�ned in terms of a goal :p, or of a goal :q,

where q is mutually recursive with p. Because of the nonmonotonic nature

of negation, this might cause contradictions and other semantic problems

that will be discussed in more detail later.

Given a strati�able program P , by applying a topological sorting on

pdg(P ), the nodes of P can be partitioned into a �nite set of n strata 1; : : : ; n,

such that, for each rule r 2 P , the predicate name of the head of r belongs

to a stratum that

(i) is � to each stratum containing some positive goal of r, and also

(ii) is strictly > than each stratum containing some negated goal of r.

The strata of P are used to structure the computation so that the pred-

icates of stratum j are used only after every predicate at the lower stratum

has been computed. Violations of this rule can produce meaningless results.

For our BoM example, for instance, a strati�cation is shown in Figure 8.1.

Observe, for example, that in order to compute howsoon, we need to have

completed the computation of larger, which, in turn, requires the compu-

tation of timeForbasic and basic subpart. This is a recursive predicate,

and many iterations might be needed before its computation is completed.

The computation of howsoon must wait until such completion; indeed, it

is not possible to compute the maximum time required by basic subpart

before all basic subparts are known.

A strati�cation of a program will be called strict if every stratum contains

either a single predicate or a set of predicates that are mutually recursive.

8.7 Expressive Power and Data Complexity

The expressive power of a language L is the set of functions that can be

written (programmed) in L. Determining the expressive power of a language

and its constructs is fundamental in understanding the limitations of the

language and the computational complexity of queries written in such a

language.
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For instance, transitive closure queries can be expressed using recursive

Datalog rules. Moreover, recursive rules are also indispensable for the task,

insofar as transitive closures cannot be computed in Datalog or SQL without

recursion. Characterizing the expressive power of a query language is often

di�cult because proving the impossibility of expressing certain classes of

queries frequently represents an open research challenge, and much current

work is devoted to this topic. This section provides a very short overview of

the most basic results on this subject.

A basic requirement for query languages is that they should be able to

express all queries expressed by relational algebra. Languages having this

property are said to be relationally complete. All languages discussed so far

meet this requirement, since safe DRC and TRC have the same expressive

power as relational algebra, and nonrecursive Datalog with negation is also

equivalent to these. The term �rst-order (FO) languages is often used to

denote the class of these equivalent languages.

At the introduction of the relational model, relational completeness for

query languages was viewed as a di�cult objective to meet, insofar as many

of the early query languages were not relationally complete. Nowadays,

commercial languages, such as SQL, are relationally complete, and they

also support set aggregate constructs that cannot be expressed by relational

algebra but are frequently needed in queries. Thus, the objective of today's

advanced database systems is to go well beyond relational completeness. In

particular, it is desirable that query languages express every query that can

be computed in a polynomial number of steps in the size of the database.

These are called DB-PTIME queries, and are discussed next.

The notion of data complexity is de�ned by viewing query programs as

mappings from the database (the input) to the answer (the output). Thus,

complexity measures, such as the big O, are evaluated in terms of the size

of the database, which is always �nite.1

Therefore, a Turing machine is used as the general model of computation,

and a database of size n is encoded as a tape of size O(n). Then, all com-

putable functions on the database can be implemented as Turing machines.

Some of these machines halt (complete their computation) in a polynomial

1Concretely, we might want to measure the database size by the number of characters

in the database, or the number of elements in relation columns, or the number of tuples in

relations. Assuming that there is a �nite number of relations, each with a �nite number of

columns, and an upper bound to the length of the items in the columns, then these three

measures only di�er by multiplicative constants of no consequence in normal complexity

measures.
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number of steps, that is, at most in O(nk) steps, with k a positive integer;

other machines halt in an exponential number of steps; others never halt.

The set of machines that halt in a number of steps that is polynomial in

n de�nes the class of DB-PTIME functions. A language L is said to be in

DB-PTIME if every function it computes is polynomial in n. L is said to be

DB-PTIME complete if L is in DB-PTIME and L can express all DB-PTIME

computable functions.

It is easy to prove that FO languages are in DB-PTIME. Actually, so-

phisticated query optimization strategies and storage structures are used by

commercial DBMSs to keep the exponents and coe�cients of the polynomi-

als low. But FO languages are not DB-PTIME complete. For instance, they

cannot express transitive closures.

As we will show later, recursive Datalog with strati�ed negation is in

DB-PTIME. However, there are still some polynomial queries, such as the

parity query, that this language cannot express. The parity query deter-

mines whether a set contains an even number of elements. To perform this

computation, you need the ability to process the elements in a relation one at

a time. Unfortunately, RA operates in the set-at-a-time mode, and Datalog

does, too, since its rules can be translated into RA. One way to overcome

this limitation is to assume that the elements in the set belong to a totally

ordered domain, (i.e., for every two distinct elements, x and y, in the domain,

either x � y or y � x). Then the elements of any set can be visited one at

a time with the technique illustrated by the parity query (Example 8.20).

In fact, if constants in the database belong to a totally ordered domain,

then strati�ed Datalog can express all polynomial functions, that is, it is

DB-PTIME complete.

While assuming that the universe is totally ordered (e.g., in some lexi-

cographical way) is, in itself, not an unreasonable assumption, it leads to a

violation of the principle of genericity of queries, which causes the loss of data

independence. Therefore, a preferable solution, discussed in later chapters, is

that of introducing nondeterministic constructs in Datalog. Nondeterminism

can also be used to express more complex queries, including exponential-time

queries in Datalog.

Finally, to achieve Turing completeness, and have a language that can

express every possible query, an in�nite computation domain must be used.

In Datalog this can be achieved by using functors.
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8.7.1 Functors and Complex Terms

In base relations, functors can be used to store complex terms and variable-

length subrecords in tuples. For instance, consider the database of at as-

sembly parts in Example 8.21. Each planar part is described by its geometric

shape and its weight. Di�erent geometric shapes require a di�erent number

of parameters. Also actualkg is the actual weight of the part, but unitkg

is the speci�c weight, from which the actual weight can be derived by multi-

plying it by the area of the part. For simplicity, we will assume that all parts

described are at in shape and can therefore be described by their planar

geometry.

Example 8.21 Flat parts, their number, shape, and weight, fol-

lowing the schema: part(Part#; Shape; Weight)

part(202; circle(11); actualkg(0:034)):

part(121; rectangle(10; 20); unitkg(2:1)):

part weight(No; Kilos) part(No; ; actualkg(Kilos)):

part weight(No; Kilos) part(No; Shape; unitkg(K));

area(Shape; Area); Kilos = K � Area:

area(circle(Dmtr); A) A = Dmtr � Dmtr � 3:14=4:

area(rectangle(Base; Height); A) A = Base � Height:

The complex terms circle(11), actualkg(0:034), rectangle(10; 20),

and unitkg(2:1) are in logical parlance called functions because of their syn-

tactic appearance, consisting of a function name (called the functor) followed

by a list of arguments in parentheses. In actual applications, these complex

terms are not used to represent evaluable functions; rather, they are used

as variable-length subrecords. Thus, circle(11) and rectangle(10, 20),

respectively, denote that the shape of our �rst part is a circle with diameter

11 cm, while the shape of the second part is a rectangle with base 10 cm

and height 20 cm. Any number of subarguments is allowed in such com-

plex terms, and these subarguments can, in turn, be complex terms. Thus,

objects of arbitrary complexity, including solid objects, can be nested and

represented in this fashion.

As illustrated by the �rst two rules in Example 8.21, functors can also be

used as case discriminants to prescribe di�erent computations. The weight

of a part is computed in two di�erent ways, depending on whether the third

argument of part contains the functor actualkg or unitkg. In the �rst

case, the weight of the part is the actual argument of the functor (e.g., 0:034

for part 202). In the latter case, the argument gives the speci�c weight per
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cm2, and its actual weight is computed by multiplying the speci�c weight

by the Area of the part. Now, Area is derived from Shape, according to the

computation prescribed by the last two rules, which have been written as-

suming a top-down passing of parameters from the goal area(Shape, Area)

to the heads of the rules (the top-down passing of parameters will be further

discussed in later sections). Thus, if Shape is instantiated to circle(11)

by the execution of the �rst goal in the second rule, then the �rst area rule

is executed; but if Shape = rectangle(10, 20), then the second rule is

executed. This example also illustrates the ability to mix computation with

retrieval in a seamless fashion.

The full power of functors comes to life when they are used to generate

recursive objects such as lists. Lists can be represented as complex terms

having the following form: list(nil) (the empty list), and list(Head; Tail)

for nonempty lists. Given the importance of lists, most logic programming

languages provide a special notation for these. Thus, [ ] stands for the

empty list, while [HeadjTail] represents a nonempty list. Then, the notation

[mary; mike; seattle] is used as a shorthand for [mary; [mike; [seattle; [ ]]]].

Lists or complex terms are powerful constructs and can be used to

write very sophisticated applications; however, they are also needed in basic

database applications, such as constructing nested relations from normalized

ones. This problem is solved in the following examples:

Example 8.22 A list-based representation for suppliers of top tube

part sup list(top tube; [cinelli; columbus; mavic]):

Transforming a nested-relation representation into a normalized relation,

such as the ps relation in Example 8.23, is quite simple.

Example 8.23 Normalizing a nested relation into a at relation

flatten(P; S; L) part sup list(P; [SjL]):

flatten(P; S; L) flatten(P; ; [SjL]):

ps(Part; Sup) flatten(Part; Sup; ):

The application of these rules to the facts of Example 8.22 yields

ps(top tube, cinelli)

ps(top tube, columbus)

ps(top tube, mavic)
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However, the inverse transformation (i.e., constructing a nested relation

from a normalized relation such as ps above) is not so simple. It requires an

approach similar to that used in Example 8.20:

Example 8.24 From a at relation to a nested one

between(P; X; Z) ps(P; X); ps(P; Y); ps(P; Z); X < Y; Y < Z:

smaller(P; X) ps(P; X); ps(P; Y); Y < X:

nested(P; [X]) ps(P; X);:smaller(P; X):

nested(P; [Yj[XjW]]) nested(P; [XjW]); ps(P; Y); X < Y;

:between(P; X; Y):

ps nested(P; W) nested(P; W);:nested(P; [XjW]):

Simple extensions of RA are needed to support Datalog with arithmetic

and function symbols (see Exercise 8.11).

8.8 Syntax and Semantics of Datalog Languages

Following the general introduction to logic-based query languages in the

previous sections, we can now present a more formal de�nition for such

languages. Thus, we relate the syntax and semantics of query languages to

those of �rst-order logic. Then, we introduce the model-theoretic semantics

of Datalog programs and present a �xpoint theorem that provides the formal

link to the bottom-up implementation of such programs.

8.8.1 Syntax of First-Order Logic and Datalog

First-order logic follows the syntax of context-free languages. Its alphabet

consists of the following:

1. Constants.

2. Variables: In addition to identi�ers beginning with uppercase, x, y,

and z also represent variables in this section.

3. Functions, such as f(t1; : : : ; tn), where f is an n-ary functor and

t1; : : : ; tn are the arguments.

4. Predicates.

5. Connectives: These include basic logical connectives _, ^, :, and the

implication symbols  , !, and $.

6. Quanti�ers: 9 denotes the existential quanti�er and 8 denotes the

universal quanti�er.

7. Parentheses and punctuation symbols, used liberally as needed to avoid

ambiguities.
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A term is de�ned inductively as follows:

� A variable is a term.

� A constant is a term.

� If f is an n-ary functor and t1; : : : ; tn are terms, then f(t1; : : : ; tn) is

a term.

Well-formed formulas (WFFs) are de�ned inductively as follows:

1. If p is an n-ary predicate and t1; : : : ; tn are terms, then p(t1; : : : ; tn)

is a formula (called an atomic formula or, more simply, an atom).

2. If F and G are formulas, then so are :F , F _ G, F ^ G, F  G,

F ! G, and F $ G.

3. If F is a formula and x is a variable, then 8x (F ) and 9x (F ) are

formulas. When so, x is said to be quanti�ed in F .

Terms, atoms, and formulas that contain no variables are called ground.

Example 8.25 Well-formed formulas in �rst-order logic

9G1(took(N; cs101 ;G1 )) ^ 9G2(took(N; cs143 ;G2 )) ^

9M(student(N;M; junior)) (8.5)

9N;9M(student(N;M; senior) ^ 8C(req(cs; C)! 9G(took(N;C;G))))

8x8y8z (p(x; z) _ :q(x; y) _ :r(y; z)) (8.6)

8x8y (:p(x; y) _ q(f(x; y); a)) (8.7)

A WFF F is said to be a closed formula if every variable occurrence in F

is quanti�ed. If F contains some variable x that is not quanti�ed, then x is

said to be a (quanti�cation-) free variable in F , and F is not a closed formula.

The variable N is not quanti�ed in the �rst formula in Example 8.25 (8.5),

so this formula is not closed. The remaining three WFFs in Example 8.25

are closed.

A clause is a closed WFF of the form

8x1; : : : ; 8xs (A1 _ : : : _ Ak _ :B1 _ : : : _ :Bn)

where A1; : : : ; Ak; B1; : : : ; Bn are atoms and x1; : : : ; xs are all the

variables occurring in these atoms. Thus, a clause is the disjunction of

Advanced Database Systems, Zaniolo, Ceri, Faloutsos, Snodgrass, Subrahmanian and Zicari page 188



8.8. SYNTAX AND SEMANTICS OF DATALOG LANGUAGES 189

positive and negated atoms, whose every variable is universally quanti�ed.

A clause is called a de�nite clause if it contains exactly one positive atom

and zero or more negated atoms. Thus a de�nite clause has the form

8x1; : : : ; 8xs (A _ :B1 _ : : : _ :Bn)

Since F  G � F _ :G, the previous clause can be rewritten in the

standard rule notation:

A B1; : : : ; Bn:

A is called the head, and B1; : : : ; Bn is called the body of the rule.

In Example 8.25, only the WFFs 8.6 and 8.7 are clauses and are written

as follows:

Example 8.26 The rule-based representation of clauses 8.6 and

8.7

p(x; z) q(x; y); r(y; z):

q(f(x; y); a) p(x; y):

A de�nite clause with an empty body is called a unit clause. It is custom-

ary to use the notation \A:" instead of the more precise notation \A  :"

for such clauses. A fact is a unit clause without variables (see Example 8.27).

Example 8.27 A unit clause (everybody loves himself) and three

facts

loves(X; X):

loves(marc; mary):

loves(mary; tom):

hates(marc; tom):

De�nition 8.5 A positive logic program is a set of de�nite clauses.

We will use the terms de�nite clause program and positive program as

synonyms.

8.8.2 Semantics

Positive logic programs have a very well de�ned formal semantics since al-

ternative plausible semantics proposed for these programs have been shown

to be equivalent. More general programs (e.g., those containing negation)

are less well behaved and more complex in this respect and will be discussed
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in later chapters. For the rest of this chapter, the word \program" simply

means a positive logic program (i.e., a set of de�nite clauses).

We will discuss the model-theoretic and �xpoint-based semantics of pro-

grams. The former provides a purely declarative meaning to a program,

while the latter provides the formal link to the bottom-up implementation

of deductive databases. The proof-theoretic approach, which leads to SLD-

resolution and top-down execution, will be covered in the next chapter.

8.8.3 Interpretations

The notion of an interpretation for a program P is de�ned with respect

to the constant symbols, function symbols, and predicate symbols that are

contained in P . In a slightly more general context, we also de�ne inter-

pretations for any �rst-order language L, given its set of constant symbols,

function symbols, and predicate symbols.

Then the �rst step for assigning an interpretation to L (and every pro-

gram written in L) is to select a nonempty set of elements U , called the

universe (or domain) of interpretation. Then, an interpretation of L consists

of the following:

1. For each constant in L, an assignment of an element in U

2. For each n-ary function in L, the assignment of a mapping from

U
n to U

3. For each n-ary predicate q in L, the assignment of a mapping from U
n

into true, false (or, equivalently, a relation on U
n)

For de�nite clause languages and programs, however, it is su�cient

to consider Herbrand interpretations, where constants and functions rep-

resent themselves. Under Herbrand interpretations, functors are viewed

as variable-length subrecords, rather than evaluable functions. Therefore,

rectangle(10, 20) denotes the actual rectangle rather than a two-place

function that computes on its arguments 10 and 20.

Then, the Herbrand universe for L, denoted UL, is de�ned as the set of

all terms that can be recursively constructed by letting the arguments of the

functions be constants in L or elements in UL. (In the case that L has no

constants, we add some constant, say, a, to form ground terms.)

Then the Herbrand base of L is de�ned as the set of atoms that can be

built by assigning the elements of UL to the arguments of the predicates.
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Therefore, given that the assignment of constants and function symbols

is �xed, a Herbrand interpretation is de�ned by assigning to each n-ary pred-

icate q, a relation q of arity n, where q(a1; : : : ; an) is true i� (a1; : : : ; an) 2 q,

a1; : : : ; an denoting elements in UL. Alternatively, a Herbrand interpretation

of L is a subset of the Herbrand base of L.

For a program P , the Herbrand universe, UP , and the Herbrand base,

BP , are, respectively, de�ned as UL and BL of the language L that has as

constants, functions, and predicates those appearing in P .

Example 8.28 Let P be the following program:

anc(X; Y) parent(X; Y):

anc(X; Z) anc(X; Y); parent(Y; Z):

parent(X; Y) father(X; Y):

parent(X; Y) mother(X; Y):

mother(anne; silvia):

mother(anne; marc):

In this example, UP = fanne; silvia;marcg, and

BP = fparent(x; y)jx; y 2 UP g [ ffather(x; y)jx; y 2 UPg [

fmother(x; y)jx; y 2 UP g [ fanc(x; y)jx; y 2 UP g

Since in Example 8.28 there are four binary predicates, and three possible

assignments for the �rst arguments and three for their second arguments,

then jBP j = 4 � 3 � 3 = 36. Since there are 2jBP j subsets of BP , there are

236 Herbrand interpretations for the program in Example 8.28.

Example 8.29 A program P with an in�nite BP and an in�nite

number of interpretations

p(f(x)) q(x):

q(a) p(x):

Then,

UP = fa; f(a); : : : ; fn(a); : : :g

where f0(a); f1(a), and f
2(a); : : :, stand for a; f(a), and f((a)),

and so on. Moreover,

BP = fp(fn(a)) jn � 0g [ fq(fm(a)) j m � 0g:
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8.9 The Models of a Program

Let r be a rule in a program P . Then ground(r) denotes the set of ground

instances of r (i.e., all the rules obtained by assigning values from the Her-

brand universe UP to the variables in r).

Example 8.30 Let r be the fourth rule in the Example 8.28

Since there are two variables in said r and jUP j = 3, then ground(r)

consists of 3� 3 rules:

parent(anne; anne) mother(anne; anne):

parent(anne; marc) mother(anne; marc):

: : :

parent(silvia; silvia) mother(silvia; silvia):

The ground version of a program P , denoted ground(P ), is the set of the

ground instances of its rules:

ground(P ) = fground(r) j r 2 Pg

For the program P of Example 8.28, ground(P ) contains 9 instantiations

of the �rst rule (since it has two variables and jUP j = 3), 27 instantiations

of the second rule, 9 instantiations of the third rule, and 9 of the fourth one,

plus the two original facts.

Let I be an interpretation for a program P . Then, every ground atom

a 2 I is said to be true (or satis�ed); if a =2 I, then a is said to be false

(or not satis�ed). Then a formula consisting of ground atoms and logical

connectives is de�ned as true or false (satis�ed or not satis�ed) according to

the rules of propositional logic. Therefore,

De�nition 8.6 Satisfaction. A rule r 2 P is said to hold true in interpre-

tation I, or to be satis�ed in I, if every instance of r is satis�ed in I.

De�nition 8.7 Model. An interpretation I that makes true all rules P is

called a model for P .

Observe that I is a model for P i� it satis�es all the rules in ground(P ).
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Example 8.31 Interpretations and models for Example 8.28

� If I1 = ;, then every instance of the �rst and second rules in the

example are satis�ed since the bodies are always false. I1, however,

is not a model since the third and fourth rules in the example (i.e.,

the facts) are not satis�ed. Thus every interpretation aspiring to be a

model must contain every fact in the program.

� Consider now I2 = fmother(anne; silvia);mother(anne;marc)g. The

�rst rule is satis�ed since the body is always false. However, consider

the following instance of the second rule: parent(anne; silvia)  

mother(anne; silvia). Here every goal in the body is satis�ed, but

the head is not. Thus, I2 is not a model.

� Now consider I3 = fmother(anne; silvia); mother(anne;marc);

parent(anne; silvia); parent(anne;marc); anc(anne; silvia);

anc(anne;marc)g. This is a model.

� I4 = I3 [ fanc(silvia;marc)g is also a model, but it is not a minimal

one since it contains a redundant atom.

Lemma 8.8 Model intersection property. Let P be a positive program, and

M1 and M2 be two models for P . Then, M1 \M2 is also a model for P .

De�nition 8.9 Minimal model and least model. A model M for a program

P is said to be a minimal model for P if there exists no other model M 0 of

P where M 0 �M . A model M for a program P is said to be its least model

if M 0 �M for every model M 0 of P .

Then, as a result of the last lemma we have the following:

Theorem 8.10 Every positive program has a least model.

Proof. Since BP is a model, P has models, and therefore minimal models.

Thus, either P has several minimal models, or it has a unique minimal model,

the least model of P . By contradiction, say thatM1 andM2 are two distinct

minimal models, then M1 \M2 � M1 is also a model. This contradicts the

assumption that M1 is a minimal model. Therefore, there cannot be two

distinct minimal models for P . 2

De�nition 8.11 Let P be a positive program. The least model of P , denoted

MP , de�nes the meaning of P .
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8.10 Fixpoint-Based Semantics

The least-model semantics provides a logic-based declarative de�nition of

the meaning of a program. We need now to consider constructive semantics

and e�ective means to realize the minimal model semantics. A constructive

semantics follows from viewing rules as constructive derivation patterns,

whereby, from the tuples that satisfy the patterns speci�ed by the goals in a

rule, we construct the corresponding head atoms. As previously discussed,

relational algebra can be used to perform such a mapping from the body

relations to the head relations. For instance, in Example 8.28, parent can

be derived through a union operator. Then grandparent can be derived

from these. However, the recursive predicate anc is both the argument and

the result of the relational algebra expression. Therefore, we have a �xpoint

equation, that is, an equation of the form x = T (x), where T is a mapping

U ! U . A value of x that satis�es this equation is called a �xpoint for T ;

for an arbitrary T , there might be zero or more �xpoints.

For a positive program P , it is customary to consider the mapping TP ,

called the Immediate consequence operator, for P , de�ned as follows:

TP (I) = fA 2 BP j 9r : A A1; : : : ; An 2 ground(P ); fA1; : : : ; Ang � Ig

Thus, TP is a mapping from Herbrand interpretations of P to Herbrand

interpretations of P .

Example 8.32 Let P be the program of Example 8.28

For I = fanc(anne;marc); parent(marc; silvia)g, we have

TP (I) = fanc(marc; silvia); anc(anne; silvia);

mother(anne; silvia);mother(anne;marc)g

Thus, in addition to the atoms derived from the applicable

rules, TP always returns the database facts and the ground in-

stances of all unit clauses.

Example 8.33 Let P be the program of Example 8.29

Then, UP = fa; f(a); : : : ; fn(a); : : :g

If I = fp(a) g, then TP (I) = fq(a)g.

If I1 = fp(x)jx 2 UPg [ fq(y)jy 2 UP g,

then TP (I1) = fq(a)g [ fp(fn(a)) jn � 1g.

If I2 = ;, then TP (I2) = ;.

If I3 = TP (I1), then TP (I3) = fq(a)g [ fp(f(a))g.
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Under the �xpoint semantics, we view a program P as de�ning the fol-

lowing �xpoint equation over Herbrand interpretations:

I = TP (I)

In general, a �xpoint equation might have no solution, one solution, or

several solutions. However, our �xpoint equation is over Herbrand inter-

pretations, which are subsets of BP , and thus partially ordered by the set

inclusion relationship �. In fact, (2jBP j)
; �) is a partial order (transitive,

reexive, and antisymmetric) and a lattice, where intersection I1 \ I2, and

union I1[I2, respectively, de�ne the lub and glb of the lattice. Furthermore,

given a set of elements in 2BP , there exists the union and intersection of such

a set, even if it contains in�nitely many elements. Thus, we have a complete

lattice. Therefore, we only need to observe that TP for de�nite clause pro-

grams is monotonic (i.e., if N �M , then TP (N) � TP (M)) to conclude that

Knaster/Tarski's theorem applies, yielding the following result:

Theorem 8.12 Let P be a de�nite clause program. There always exists a

least �xpoint for TP , denoted lfp(TP ).

The least-model semantics and the least-�xpoint semantics for positive

programs coincide:

Theorem 8.13 Let P be a de�nite clause program. Then MP = lfp(TP ).

Proof. Let I be a �xpoint for TP . If I is not a model, then there exists

a rule r 2 ground(P ), where the body of r is satis�ed by I but the head

h(r) is not in I. Then I cannot be a �xpoint. Thus, every �xpoint is also a

model. Vice versa, letMP be the least model for P . Observe that if a 2MP

and a 62 TP (MP ), then there is no rule in ground(P ) with head a and body

satis�ed by MP . Thus, MP � fag would also be a model|a contradiction.

Thus, TP (MP ) � MP ; but if TP (MP ) � MP , then MP cannot be a model.

Thus, TP (MP ) = MP . Therefore, MP is a �xpoint; now, we need to prove

that it is the least �xpoint. In fact, MP � lfp(TP ) yields a contradiction,

since every �xpoint is a model, and lfp(TP ) would be a smaller model than

MP . Thus, MP = lfp(TP ). 2

In conclusion, the least-�xpoint approach and the least-model approach

assign the same meaning to a positive program P : lfp(TP ) =MP .
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8.10.1 Operational Semantics: Powers of TP

For positive programs, lfp(TP ) can simply be computed by repeated appli-

cations of TP . The result of n applications of TP is called the nth power of

TP , denoted T

"n

P
, de�ned as follows:

T

"0
P
(I) = I

: : :

T

"n+1
P

(I) = TP (T
"n

P
(I))

Moreover, with ! denoting the �rst limit ordinal, we de�ne

T

"!

P
(I) =

[
fT

"n(I) j n � 0g

Of particular interest are the powers of TP starting from the empty set

(i.e., for I = ;).

Theorem 8.14 Let P be a de�nite clause program. Then lfp(TP ) = T

"!

P
(;).

Proof. To show that T
"!

P
(;) � TP (T

"!

P
(;)), let a 2 T

"!

P
(;). Then, for

some integer k > 0, a 2 T
"k

P
(;). But T

"k

P
(;) = TP (T

"k�1
P

(;)) � TP (T
"!

P
(;)),

since TP is monotonic and T
"k�1
P

(;) � T

"!

P
(;). Thus, a 2 TP (T

"!

P
(;)).

Now, to show that T
"!

P
(;) � TP (T

"!

P
(;)), observe that every atom in the

latter set must be the head of some rule r 2 ground(P ) whose goals are

in T

"!

P
(;). Now, observe that a 2 T

"!

P
(;) i� a 2 T

"k

P
(;) for some integer

k. Therefore, since r has a �nite number of goals, there is an integer k for

which all the goals of r are in T

"k

P
(;). Then, for the head of r we have

h(r) 2 T
"k+1
P

(;) � T

"!

P
(;).

Therefore, we have proven that T
"!

P
(;) is a �xpoint for TP . To prove that

it is the least �xpoint, let us show that if N = TP (N), then N � T

"!

P
(;).

Indeed, if N = TP (N), then N = T

"!

P
(N). But, since T

"!

P
is monotonic,

T

"!

P
(N) � T

"!

P
(;). 2

The equality MP = lfp(TP ) = T

"!

P
(;) outlines a simple algorithm for

computing the least model of a de�nite clause program. In fact, given that

TP is monotonic, and that T
"0
P
(;) � T

"1
P
(;), by induction it follows that

T

"n

P
(;) � T

"n+1
P

(;). Thus, the successive powers of TP form an ascending

chain. Moreover,
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T

"k

P
(;) =

[

n�k

T

"n

P
(;)

Observe that if T
"n+1
P

(;) = T

"n

P
(;), then T

"n

P
(;) = T

"!

P
(;). Thus, the

least �xpoint and least model can be computed by starting from the bottom

and iterating the application of T ad in�nitum|or until no new atoms are

obtained and the (n+ 1)th power is identical to the nth power.

Since T
"k

P
is also monotonic, for all integers k and for k = !, we have the

following:

Lemma 8.15 Let P be a de�nite clause program, with least model MP .

Then, T
"!

P
(M) =MP for every M �MP .

Proof. Since ; � M � MP , then T

"!

P
(;) � T

"!

P
(M) � T

"!

P
(MP ), where

T

"!

P
(;) = T

"!

P
(MP ). 2
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8.12 Exercises

8.1. Using the part cost relation of Example 8.14, write safe Datalog rules

to �nd those suppliers who supply all basic parts.

8.2. Write a Datalog query to �nd students who have taken at least two

classes, and got the highest grade (possibly with others) in every class

they took.

8.3. Express the previous query in SQL using the EXISTS construct.

8.4. Universally quanti�ed queries can also be expressed in SQL using the

set aggregate COUNT. Reformulate the last query and that of Exam-

ple 8.13 in SQL, using the COUNT aggregate.

8.5. A relationally complete relational algebra (RA) contains set union, set

di�erence, set intersection, Cartesian product, selection, and projec-

tion.

a. Show that the expressive power of RA does not change if we drop

set intersection.

b. List the monotonic operators of RA.

c. Show that there is a loss in expressive power if we drop set di�er-

ence from the RA described above.

8.6. De�ne generalized projection using the other RA operators.

8.7. Which of the following rules and predicates are safe if b1 and b2 are

database predicates?

r1 : p(X; X) b2(Y; Y; a); b1(X); X > Y:

r2 : q(X; Y) p(X; Z); p(Z; Y):

r3 : s(X) b2(Y; Y; a); X > Y;:b1(X):

Translate the safe Datalog rules and predicates in this program into

equivalent relational algebra expressions.

8.8. Improve the translation proposed for negated rule goals into RA by

minimizing the number of columns in the relations involved in the set

di�erence. Translate the following rule:

r4 : n(X; X) b2(X; Y; );:b2(X; a; ):
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8.9. Prove the converse of Theorem 8.3: that is, show that for every RA

expression, there exists an equivalent Datalog program, which is safe

and nonrecursive.

8.10. Express in Datalog the division operation R(A;B)� S(B). By trans-

lating the rules so obtained into RA, express relation division in terms

of the other RA operators.

8.11. Generalize the safety conditions for Datalog to include function sym-

bols. Then extend the RA with the following two operators: the ex-

tended projection, which extracts the subarguments of a complex term,

and the combine operator (denoted by ), which builds complex terms

from simple tokens. For instance, if a relation R only contains the tu-

ple ('Jones'; degree year(ba; 1996)), then S = �$1;$1:0;$1:1R contains

the tuple ('Jones'; degree year; ba). Then degree($3)S returns the tu-

ple ('Jones'; degree(ba)). Prove that every safe nonrecursive Datalog

program can be mapped into extended RA algebra expressions.

8.12. The following employee relation, emp(Eno, Ename, MgNo), speci�es

the name and manager number of each employee in the company. The

management structure in this company is a strict hierarchy. Write

transitive closure rules to construct emp all mgrs(Eno, AllMangrs),

where AllMangrs is a list containing the employee numbers for all

managers of Eno in the management chain.

8.13. Write a Datalog program to compute how many courses required for

a cs degree each senior cs student is missing.

8.14. Prove the model intersection property.

8.15. Show that for each positive program P ,

T
"n+1
p (;) � T

"n
p (;)

8.16. Let P be a positive Datalog program. Show that T
"!

P
can be computed

in time that is polynomial in the size of P 's Herbrand base.
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Chapter 9

Implementation of Rules

and Recursion

9.1 Operational Semantics:

Bottom-Up Execution

In the last chapter, we saw that the least model for a program P can be com-

puted as T
"k

P
(;), where k is the lowest integer for which T

"k

P
(;) = T

"k+1
P

(;), if

such an integer exists, or the �rst ordinal ! otherwise. The need to compute

to the �rst ordinal can only occur in the presence of an in�nite Herbrand

universe (e.g., when there are function symbols). For basic Datalog, without

function symbols or arithmetic, the universe is �nite, and the computation

of the least model of a program ends after a �nite number of steps k.

This property forms the basis for the bottom-up computation methods

used by deductive databases. Several improvements and tuning for special

cases are needed, however, to make this computation e�cient. This chapter

describes these improved bottom-up execution techniques and other exe-

cution techniques that are akin to top-down execution strategies used in

Prolog.

9.2 Strati�ed Programs and Iterated Fixpoint

In most systems, T
"!

P
(;) is computed by strata. Unless otherwise speci�ed,

we will use strict strati�cations in the discussion that follows.

The strati�ed computation is inationary, in the sense that the results

of the previous iterations on TP are kept and augmented with the results of
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the new iteration step. This yields the concept of the inationary immediate

consequence operator.

De�nition 9.1 Let P be program. The inationary immediate consequence

operator for P , denoted �P , is a mapping on subsets of BP de�ned as fol-

lows:

�P (I) = TP (I) [ I

It is easy to prove by induction that �
"n

P
(;) = T

"n

P
(;). (The compu-

tation T

"!

P
(;) is frequently called inationary �xpoint computation.) Thus,

we have the following properties:

MP = lfp(TP ) = T

"!

P
(;) = lfp(�P ) = �

"!

P
(;)

Algorithm 9.2 Iterated �xpoint for program P strati�ed in n strata.

Let Pj, 1 � j � n, denote the rules with their head in the jth stratum.

Then, Mj is inductively constructed as follows:

1. M0 = ; and

2. Mj = �
"!

Pj
(Mj�1).

Theorem 9.3 Let P be a positive program strati�ed in n strata, and let Mn

be the result produced by the iterated �xpoint computation. Then, MP =Mn,

where MP is the least model of P .

Proof. We want to prove that, for all 1 � j � n,Mj = �
"!

�j
(Mj�1), where

��j denotes the inationary immediate consequence operator for the rules

up to the jth stratum. The property is trivial for j = 1. Now assume that

it holds for every Mi, where 0 � i � j � 1. Now, the equality �
"k

Pj
(Mj�1) =

�
"k

�j(Mj�1) holds for k = 0, and we will next prove that if it holds for k,

then it also holds for k+1. Indeed, then �
"k+1
�j (Mj�1) = ��j(�

"k

�j(Mj�1)) =

��j(�
"k

Pj
(Mj�1). But every rule with its head in a stratum < j produces

atoms that are already inMj�1. Thus, ��j(�
"k

Pj
(Mj�1)) = �Pj

(�
"k

Pj
(Mj�1)),

and Mj = �
"!

�j
(Mj�1).

Therefore, by using double induction over the n strata, we conclude

that Mn = �
"!

�n
(Mn�1). But Mn = �

"!

�n
(Mn�1) = �

"!

P
(Mn�1). But since

; �Mn�1 �MP , then �
"!

P
(Mn�1) =MP , by Lemma 8.15. 2

The iterated �xpoint computation de�ned by Algorithm 9.2 terminates

whenever the original �xpoint computation terminates. However, when this
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requires an in�nite number of steps, then the iterated �xpoint will not go

past the �rst stratum, requiring in�nitely many iterations. In this case, we

have a trans�nite computation that is more accurately described by the term

\procedure," than by \algorithm."

9.3 Di�erential Fixpoint Computation

The algorithm for computing �
"!

Pj
(Mj) for stratum j of the iterated �xpoint

computation is given by Algorithm 9.4, where for notational expediency, we

let � stand for �Pj
and M stand for Mj�1.

Algorithm 9.4 The inationary �xpoint computation for each stratum

S :=M ;

S
0 := �(M)

while (S � S
0)

f

S := S
0;

S
0 := �(S)

g

This computation can be improved by observing that T (M) = TE(M)

and �(M) = �E(M), where TE denotes the immediate consequence operator

for the exit rules and �E denotes its inationary version. Conversely, let TR
denote the immediate consequence operator for the recursive rules and let

�R be its inationary version. Then, �(S) in the while loop can be replaced

by �R(S), while �(M) outside the loop can be replaced by �E(M). For

instance, for the linear ancestor rules of Example 9.1, �E and �R are de�ned

by rules r1 and r2, respectively.

Example 9.1 Left-linear ancestor rules

r1 : anc(X; Y) parent(X; Y):

r2 : anc(X; Z) anc(X; Y); parent(Y; Z):

Even after this �rst improvement, there is still signi�cant redundancy in

the computation. In fact, before entering the loop, the set S contains the

pairs parent/person. After the �rst iteration, this contains the pairs grand-

parent/person, along with the old pairs parent/person. Thus, at the second

iteration, the recursive rule produces the pairs great-grandparent/person,

but also produces the old pairs great-grandparent/person from previous it-

erations. In general, the jth iteration step also recomputes all atoms obtained

Advanced Database Systems, Zaniolo, Ceri, Faloutsos, Snodgrass, Subrahmanian and Zicari page 203



204 9. IMPLEMENTATION OF RULES AND RECURSION

in the j � 1th step. This redundancy can be eliminated by using �nite dif-

ferences techniques, which trace the derivations over two steps. Let us use

the following notation:

1. S is a relation containing the atoms obtained up to step j � 1.

2. S0 = �R(S) is a relation containing the atoms produced up to step j.

3. �S = �R(S) � S = TR(S) � S denotes the atoms newly obtained at

step j (i.e., the atoms that were not in S at step j � 1).

4. �0S = �R(S
0)� S

0 = TR(S
0)� S

0 are the atoms obtained at step j.

We can now rewrite Algorithm 9.4 as follows:

Algorithm 9.5 Di�erential �xpoint

S :=M ;

�S := �E(M);

S
0 := �S [ S;

while (�S 6= ;)

f

�
0
S := TR(S

0)� S
0;

S := S
0 ;

�S := �
0
S;

S
0 := S [ �S

g

For Example 9.1, let anc, �anc, and anc
0, respectively, denote ancestor

atoms that are in S, �S, and S
0 = S [ �S. Then, when computing �S0 :=

TR(S
0)� S

0 in Algorithm 9.5, we can use a TR de�ned by the following rule:

�
0
anc(X; Z) anc

0(X; Y); parent(Y; Z):

Now, we can split anc0 into anc and �anc, and rewrite the last rule into the

following pairs:

�
0
anc(X; Z) �anc(X; Y); parent(Y; Z):

�
0
anc(X; Z) anc(X; Y); parent(Y; Z):

The second rule can now be eliminated, since it produces only atoms

that were already contained in anc
0 (i.e., in the S0 computed in the previous

iteration). Thus, in Algorithm 9.5, rather than using �0S := TR(S
0)�S0, we
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can write �0S := TR(�S) � S
0 to express the fact that the argument of TR

is the set of delta tuples from the previous step, rather the set of all tuples

obtained so far. This transformation holds for all linear recursive rules.

Consider now a quadratic rule (i.e., one where the recursive predicate

appears twice in the body). Say, for instance, that we have the following:

Example 9.2 Quadratic ancestor rules

ancs(X; Y) parent(X; Y):

ancs(X; Z) ancs(X; Y); ancs(Y; Z):

The recursive rule can be transformed for Algorithm 9.5 as follows:

r : �0ancs(X; Z) ancs
0(X; Y); ancs0(Y; Z):

By partitioning the relation corresponding to the �rst goal into an ancs

part and a �ancs part, we obtain:

r1 : �
0
ancs(X; Z) �ancs(X; Y); ancs0(Y; Z):

r2 : �
0
ancs(X; Z) ancs(X; Y); ancs0(Y; Z):

Now, by the same operation on the second goal, we can rewrite the second

rule just obtained into

r2;1 : �
0
ancs(X; Z) ancs(X; Y); �ancs(Y; Z):

r2;2 : �
0
ancs(X; Z) ancs(X; Y); ancs(Y; Z):

Rule r2;2 produces only \old" values, and can thus be eliminated; we are

then left with rules r1 and r2;1, below:

�
0
ancs(X; Z) �ancs(X; Y); ancs0(Y; Z):

�
0
ancs(X; Z) ancs(X; Y); �ancs(Y; Z):

Thus, for nonlinear rules, the immediate consequence operator used in

Algorithm 9.5 has the more general form �
0
S := TR(�S; S; S

0) � S
0, where

�S = S
0 � S.

Observe that even if S and S
0 are not totally eliminated, the resulting

computation is usually much more e�cient, since it is typically the case that

n = j�Sj � N = jSj � jS0j. The original ancs rule, for instance, requires

the equijoin of two relations of size N ; after the di�erentiation we need to

compute two equijoins, each joining a relation of size n with one of size N .

Observe also that there is a simple analogy between the symbolic di�er-

entiation of these rules and the chain rule used to di�erentiate expressions

in calculus. For instance, the body of the left-linear anc rule of Example 9.1
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consists of the conjunction of a recursive predicate anc (a variable predi-

cate) followed by a constant predicate. Thus, we have a pattern x � c, where

x stands for a variable and c for a constant. Therefore, �(x � c) = (�x) � c.

For the quadratic rule de�ning ancs in Example 9.2, we have instead the

pattern �(x � y) = �x � y+ �y � x, where the symbol `+' should be interpreted

as set union.

The general expression of TR(�S; S; S
0) for a recursive rule of rank k is

as follows. Let

r : Q0  c0; Q1; c1; Q2; : : : ; Qk; ck

be a recursive rule, where Q1; : : : ; Qk stand for occurrences of predicates

that are mutually recursive with Q0, and c1; : : : ; ck stand for the remaining

goals. Then, r is symbolically di�erentiated into k rules as follows:

r1 : �
0
Q0  c0; �Q1; c1; Q

0
2; : : : Q

0
k; ck

r2 : �
0
Q0  c0; Q1; c1; �Q2; : : : Q

0
k; ck

: : :

rj : �
0
Q0  : : : �Qj Q

0
k
; ck

: : :

rk : �
0
Q0  c0; Q1; c1; Q2; : : : �Qk; ck

Observe the pattern of delta predicates on the main diagonal, unprimed

predicates to the left of the diagonal, and primed predicates to its right. This

result was obtained by expanding each goal Q0
j
into �Qj and Qj for ascending

js. If we perform the expansion by descending js, the deltas become aligned

along the other diagonal.

In terms of implementation, the di�erential �xpoint is therefore best re-

alized by rewriting the original rules. Alternatively you can �rst transform

the original rules into relational algebra expressions and apply symbolic dif-

ferentiation to those.

9.4 Top-Down Execution

In the top-down procedural semantics of logic programs, each goal in a rule

body is viewed as a call to a procedure de�ned by other rules in the same

stratum or in lower strata. Consider, for instance, the rules from Exam-

ple 9.3. The goal area(Shape; Area) in rule r2 can be viewed as a call

to the procedure area de�ned by rules r3 and r4. At the time when the

procedure is called, Shape is instantiated to values such as circle(11) or
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Example 9.3 The rules of Example 8.21

r1 : part weight(No; Kilos) part(No; ; actualkg(Kilos)):

r2 : part weight(No; Kilos) part(No; Shape; unitkg(K));

area(Shape; Area);

Kilos = K � Area:

r3 : area(circle(Dmtr); A) A = Dmtr � Dmtr � 3:14=4:

r4 : area(rectangle(Base; Height); A) A = Base � Height:

rectangle(10; 20) by the execution of r3 and r4 goals. The argument Area

is instead assigned a value by the execution of the two called area rules.

Thus, A and Area can be viewed as what in procedural languages are respec-

tively called formal parameters and actual parameters. Unlike procedural

languages, however, the arguments here can be complex, and the passing

of parameters is performed through a process known as uni�cation. For in-

stance, if Shape = rectangle(10; 20), this will be made equal to (uni�ed

to) the �rst argument of the second area rule, rectangle(Base, Height),

by setting Base = 10 and Height = 20.

9.4.1 Uni�cation

De�nition 9.6 A substitution � is a �nite set of the form fv1=t1; : : : ; vn=tng,

where each vi is a distinct variable, and each ti is a term distinct from vi.

Each ti is called a binding for vi. The substitution � is called a ground

substitution if every ti is a ground term.

Let E be a term and � a substitution for the variables of E. Then,

E� denotes the result of applying the substitution � to E (i.e., of replacing

each variable with its respective binding). For instance, if E = p(x; y; f(a))

and � = fx=b; y=xg, then E� = p(b; x; f(a)). If  = fx=cg, then E =

p(c; y; f(a)). Thus, variables that are not part of the substitution are left

unchanged.

De�nition 9.7 Let � = fu1=s1; : : : ; um=smg and � = fv1=t1; : : : ; vn=tng be

substitutions. Then the composition �� of � and � is the substitution obtained

from the set

fu1=s1�; : : : ; um=sm�; v1=t1; : : : ; vn=tng

by deleting any binding ui=si� for which ui = si� and deleting any binding

vj=tj for which vj 2 fu1; : : : ; umg.
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For example, let � = f(x=f(y); y=z)g and � = fx=a; y=b; z=yg. Then

�� = fx=f(b); z=yg.

De�nition 9.8 A substitution � is called a uni�er for two terms A and B

if A� = B�.

De�nition 9.9 A uni�er � for these two terms is called a most general

uni�er (mgu), if for each other uni�er , there exists a substitution � such

that  = ��.

For example, the two terms p(f(x); a) and p(y; f(w)) are not uni�able

because the second arguments cannot be uni�ed.

The two terms p(f(x); z) and p(y; a) are uni�able, since � = fy=f(a);

x=a; z=a)g is a uni�er. A most general uni�er is � = fy=f(x); z=ag. Note

that � = �fx=ag.

There exist e�cient algorithms to perform uni�cation; such algorithms

either return a most general uni�er or report that none exists.

9.4.2 SLD-Resolution

Consider a rule r : A  B1; : : : ; Bn, and a query goal  g, where r and

g have no variables in common (we can rename the variables of r to new

distinct names to satisfy this requirement). If there exists an mgu � that

uni�es A and g, then the resolvent of r and g is the goal list:

 B1�; : : : ; Bn�:

The following abstract algorithm describes the top-down proof process

for a given program P and a goal list G.

Algorithm 9.10 SLD-resolution

Input: A �rst-order program P and a goal list G.

Output: Either an instance G� that was proved from P , or failure.

begin Set Res = G;

While Res is not empty, repeat the following:

Choose a goal g from Res;

Choose a rule A B1; : : : ; Bn(n � 0) from P

such that A and g unify under the mgu �,

(renaming the variables in the rule as needed);
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If no such rule exists, then

output failure and exit;

else Delete g from Res;

Add B1; : : : ; Bn to Res;

Apply � to Res and G;

If Res is empty, then output G�

end

Example 9.4 SLD-resolution on a program with unit clauses

s(X; Y) p(X; Y); q(Y):

p(X; 3):

q(3):

q(4):

Let us consider the top-down evaluation of the goal ?s(5; X) as applied

to this program:

1. The initial goal list is

 s(5; W)

2. We choose s(5; W) as our goal and �nd that it uni�es with the �rst rule

under the substitution fX=5; Y=Wg. The new goal list is

 p(5; W); q(W)

3. This time, say that we choose q(W) as a goal and �nd that it uni�es

with the fact q(3), under the substitution fW=3g. (This goal also uni�es

with q(4), under the substitution fW=4g, but say that we choose the

�rst substitution). Then, the new goal list is

 p(5; 3)

which uni�es with the fact p(X; 3) under the substitution fX=5g. At

this point, the goal list becomes empty and we report success. Thus, a

top-down evaluation returns the answer fW=3g for the query  s(5; W)

from the example program.

However, if in the last step above, we choose instead the fact q(4), then

under substitution fW=4g, we obtain the following goal list:

 p(5; 4)

This new goal cannot unify with the head of any rule; thus SLD-resolution

returns failure.
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Therefore, at each step, SLD-resolution chooses nondeterministically

� a next goal from the goal list, and

� a next rule from those whose head uni�es with the goal just selected.

Therefore, a single instance of an SLD-resolution can return either suc-

cess or failure, depending on the choices made. However, say q is a predicate

without bound arguments. Then we can consider all possible choices and

collect the results returned by successful instances of SLD-resolution starting

from the goal  q. This is known as the success set for q; the union of the

success sets for all the predicates in program P is equal to the least model

of P . This ensures the theoretical equivalence of top-down semantics and

bottom-up semantics.

The generation of the success set for a given predicate is possible (e.g.,

using breadth-�rst search); however, this is considered too ine�cient for

most practical applications. Thus, systems such as Prolog use depth-�rst

exploration of alternatives, whereby goals are always chosen in a left-to-

right order and the heads of the rules are also considered in the order they

appear in the program. Then, the programmer is given responsibility for

ordering the rules and their goals in such a fashion as to guide Prolog into

successful and e�cient searches. The programmer must also make sure that

the procedure never falls into an in�nite loop. For instance, say that our

previous ancestor example is written as follows:

anc(X; Z) anc(X; Y); parent(Y; Z):

anc(X; Z) parent(X; Y):

and that our goal is ?anc(marc; mary). By computing the resolvent of this

goal with the head of the �rst rule, we obtain

?anc(marc; Y1); parent(Y1; mary):

By replacing the �rst goal with its resolvent with the head of the �rst rule,

we obtain the following goals:

?anc(marc; Y2); parent(Y2; Y1); parent(Y1; mary):

An additional resolution of the �rst goal with the �rst rule yields

?anc(marc; Y3); anc(Y3; Y2); parent(Y2; Y1); parent(Y1; mary):

Thus at each step we construct a longer and longer list, without ever

returning a single result. When working with Prolog, however, the program-

mer is aware of the fact that the goals are visited from left to right, and
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the rule heads are searched in the same order as they are written. Thus,

the programmer will list the rules and order the goals in the rules so as to

avoid in�nite loops. In our case, this means the exit rule is placed before the

recursive one, and the parent goal is placed before the recursive anc goal,

yielding the following:

Example 9.5 Computing ancestors using Prolog

anc(X; Z) parent(X; Y):

anc(X; Z) parent(Y; Z); anc(X; Y):

In many cases, however, rule reordering does not ensure safety from

in�nite loops. Take, for instance, the nonlinear version of ancestor:

anc(X; Z) parent(X; Y):

anc(X; Z) anc(Y; Z); anc(X; Y):

This will �rst produce all the ancestors pairs; then it will enter a perpet-

ual loop. (This is best seen by assuming that there is no parent fact. Then,

the recurring failure of the �rst rule forces the second rule to call itself in an

in�nite loop.)

Even when the rules are properly written, as in Example 9.5, directed

cycles in the underlying parent relation will cause in�nite loops. In the

particular case of our parent relation, cycles are not expected, although they

might result from homonyms and corrupted data. But the same rules could

also be used to compute the transitive closures of arbitrary graphs, which

normally contain cycles.

Therefore, the bottom-up computation works in various situations where

the top-down approach ounders in in�nite loops. Indeed, the bottom-up

operational semantics is normally more robust than the top-down semantics.

However, the top-down approach is superior in certain respects|particularly

with its ability to take advantage of constants and constraints that are part

of the query goals to reduce the search space. This can be illustrated by the

following example:

Example 9.6 Blood relations

anc(Old; Young) parent(Old; Young):

anc(Old; Young) anc(Old; Mid); parent(Mid; Young):

grandma(Old; Young) parent(Mid; Young); mother(Old; Mid):

parent(F; Cf) father(F; Cf):

parent(M; Cm) mother(M; Cm):
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In a query such as ?grandma(GM; marc), marc uni�es with Young, which

in turn uni�es �rst with Cf and then with Cm. This results in the father

relation being searched for tuples where the second component is marc|an

e�cient search if an index is available on this second column. If this search

yields, say, tom, then this value is also passed to Mid, which is instantiated

to tom. Thus, the goal mother(Old; tom) is now solved, and if, say, ann is

the mother of tom, then the value GM = ann is returned. For the sake of

discussion, say that several names are found when searching for the father

of marc; then each of these names is passed to the goal mother, and new

answers are generated for each new name (assuming that Prolog is in an all-

answers mode). When no more such names are found, then the substitution

M = marc is attempted, and the second parent rule is processed in similar

fashion.

The passing of constants from the calling goals to the de�ning rules can

also be used in the execution of some recursive predicates. For instance, say

that in Example 9.6, we have a query ?anc(milton; SV). Then, milton must

unify with the �rst argument in anc, through zero or more levels of recursive

calls, until, via the exit rule, it is passed to the �rst argument of parent,

and from there to the base relations.

Advanced deductive database systems mix the basic bottom-up and top-

down techniques to combine their strengths. Some systems adopt Prolog's

SLD-resolution extended with memorization to overcome various problems,

such as those created by cycles in the database. Many systems keep the

bottom-up, �xpoint-based computation, but then use special methods to

achieve a top-down propagation of query constants similar to that described

in this section. The next sections describe these methods, beginning with

techniques used for nonrecursive predicates, and proceeding to those used

for recursive predicates of increasing complexity.

9.5 Rule-Rewriting Methods

The grandma predicate can be computed using the following relational alge-

bra expression:

GRANDMA = �$3;$2((FATHER [MOTHER) 1$1=$2 MOTHER)

which is the result of replacing selections on Cartesian products with equiv-

alent joins in the RA expression produced by Algorithm 8.2. Then the

answer to the query goal ?grandma(marc; GM) is �$2=marc GRANDMA. But

this approach is ine�cient since it generates all pairs grandma/grand-child,

even if most of them are later discarded by the selection �$2=marc. A better
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approach is to transform the original RA expression by pushing selection

into the expression as is currently done by query optimizers in relational

databases. Then we obtain the equivalent expression:

�$3;$2((�$2=marcFATHER [ �$2=marcMOTHER) 1$1=$2 MOTHER)

In the RA expression so obtained, only the parents of marc are selected from

the base relations mother and father and processed through the rest of the

expression. Moreover, since this selection produces a binary relation where

all the entries in the second column are equal to marc, the projection �$1

could also be pushed into the expression along with selection.

The optimization performed here on relational algebra can be performed

directly by specializing the original rules via an SLD-like pushing of the

query constants downward (i.e., into the rules de�ning the goal predicate);

this produces the following program, where we use the notation X=a to denote

that X has been instantiated to a:

Example 9.7 Find the grandma of marc

?grandma(GM; marc)

grandma(Old; Young=marc) parent(Mid; Young=marc);

mother(Old; Mid):

parent(F; Cf=marc) father(F; Cf=marc):

parent(M; Cm=marc) mother(M; Cm=marc):

Thus, the second argument in the predicate parent is set equal to the

constant marc.

9.5.1 Left-Linear and Right-Linear Recursion

If, in Example 9.6, we need to compute all the anc pairs, then a bottom-up

approach provides a very e�ective computation for this recursive predicate.

However, consider the situation where the goal contains some constant; for

example, say that we have the query ?anc(tom; Desc). As in the case of

nonrecursive rules, we want to avoid the wasteful approach of generating

all the possible ancestor/person pairs, later to discard all those whose �rst

component is not tom. For the recursive anc rule of Example 9.6, we can

observe that the value of Old in the head is identical to that in the body;

thus we can specialize our recursive predicate to anc(tom; ) throughout the

�xpoint computation. Therefore, the anc rules can be specialized into those
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of Example 9.8, where constant tom has been pushed into the recursive

predicate.1

Example 9.8 The descendants of tom

?anc(tom; Desc):

anc(Old=tom; Young) parent(Old=tom; Young):

anc(Old=tom; Young) anc(Old=tom; Mid); parent(Mid; Young):

As previously discussed, Prolog performs this operation during execution.

Most deductive databases prefer a compilation-oriented approach where the

program is compiled for a query form, such as anc($Name; X). The dollar

sign before Name denotes that this is a deferred constant, i.e., a parameter

whose value will be given at execution time. Therefore, deferred constants

are treated as a constant by the compiler, and the program of Example 9.8

is rewritten using $Name as the �rst argument of anc.

Transitive-closure-like computations can be expressed in several equiv-

alent formulations; the simplest of these use recursive rules that are either

left-linear or right-linear. The left-linear version of anc is that of Example

9.6. Consider now the right-linear formulation of ancestor:

Example 9.9 Right-linear rules for the descendants of tom

anc(Old; Young) parent(Old; Young):

anc(Old; Young) parent(Old; Mid); anc(Mid; Young):

With the right-linear rules of Example 9.9, the query ?anc($Name; X) can

no longer be implemented by specializing the rules. (To prove that, say that

we replace Old with the constant $Name = tom; then, the transitive closure

cannot be computed using parent(tom; Mid), which only yields children of

tom, while the grandchildren of tom and their children are also needed.)

While it is not possible to specialize the program of Example 9.9 for a

query ?anc($Name; X), it is possible to transform it into an equivalent pro-

gram for which such a specialization will work. Take, for instance, the right-

linear program of Example 9.9; this can be transformed into the equivalent

left-linear program of Example 9.6, on which the specialization approach can

then be applied successfully. While recognizing the equivalence of programs

is generally undecidable, many simple left-linear rules can be detected and

1As a further improvement, the constant �rst argument might also be dropped from

the recursive predicate.
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transformed into their equivalent right-linear counterparts. Symmetric con-

clusions follow for the left-linear program of Example 9.6, which, for a query

such as ?anc(Y; $D), is transformed into its right-linear equivalent of Exam-

ple 9.9. Techniques for perfoming such transformations will be discussed in

Section 9.6.

After specialization, left-linear and right-linear rules can be be supported

e�ciently using a single �xpoint computation. However, more complex re-

cursive rules require more sophisticated methods to exploit bindings in query

goals. As we shall see in the next section, these methods generate a pair of

�xpoint computations.

9.5.2 Magic Sets Method

To illustrate the basic idea behind magic sets, let us �rst consider the fol-

lowing example, consisting of two nonrecursive rules that return the names

and addresses of senior students:

Example 9.10 Find the graduating seniors and the addresses of

their parents

snr par add(SN; PN; Paddr) senior(SN); parent(PN; SN);

address(PN; Paddr):

senior(SN) student(SN; ; senior); graduating(SN):

A bottom-up computation on the rules of Example 9.10 determines grad-

uating seniors, their parents, and the parents' addresses in an e�cient man-

ner. But, say that we need to �nd the address of a particular parent, for

example, the address of Mr. Joe Doe, who has just called complaining that

he did not get his invitation to his daughter's graduation. Then, we might

have the following query: ?snr par add(SN;'Joe Doe'; Addr). For this query,

the �rst rule in Example 9.10 can be specialized by letting PN ='Joe Doe'.

Yet, using a strict bottom-up execution, the second rule still generates all

names of graduating seniors and passes them up to the senior(SN) of the

�rst rule. An optimization technique to overcome this problem uses an aux-

iliary \magic" relation computed as follows:

Example 9.11 Find the children of Joe Doe, provided that they

are graduating seniors

snr par add q('Joe Doe'):

m:senior(SN) snr par add q(PN); parent(PN; SN):
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The fact snr par add q('Joe Doe') stores the bound argument of the original

query goal. This bound argument is used to compute a value of SN that is

then passed to m:senior(SN) by the bottom-up rule in Example 9.11, emulat-

ing what the �rst rule in Example 9.10 would do in a top-down computation.

We can now improve the second rule of Example 9.10 as follows:

Example 9.12 Restricting search via magic sets

senior(SN) m:senior(SN);

student(SN; ; senior); graduating(SN):

Therefore, the bottom-up rules of Example 9.12 are designed to emulate

the top-down computation where the binding is passed from SN in the head

to the �rst goal of parent. This results in the instantiation of SN, which is

then passed to the argument of senior.

The \magic sets" notion is very important for those recursive predicates

that are not amenable to the specialization treatment used for left-linear and

right-linear rules. For instance, the recursive rule in Example 9.13 is a linear

rule that is neither left-linear nor right-linear.

Example 9.13 People are of the same generation if their parents

are of the same generation

?sg(marc; Who):

sg(X; Y) parent(XP; X); sg(XP; YP); parent(YP; Y):

sg(A; A):

The recursive rule here states that X and Y are of the same generation

if their respective parents XP and YP also are of the same generation. The

exit rule sg(X; X) states that every element of the universe is of the same

generation as itself. Obviously this rule is unsafe, and we cannot start a

bottom-up computation from it. However, consider a top-down computa-

tion on these rules, assuming for simplicity that the fact parent(tom; marc)

is in the database. Then, the resolvent of the query goal with the �rst rule is

 parent(XP; marc); sg(XP; YP); parent(YP; Y). Then, by unifying the �rst

goal in this list with the fact parent(tom; marc), the new goal list becomes

 sg(tom; YP); parent(YP; Y). Thus, the binding was passed from the �rst

argument in the head to the �rst argument of the recursive predicate in

the body. Now, the recursive call unfolds as in the previous case, yielding

the parents of tom, who are the grandparents of marc. In summary, the

top-down computation generates all the ancestors of marc using the recur-

sive rule. This computation causes the instantiation of variables X and XP,
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while Y and YP remain unbound. The basic idea of magic sets is to emulate

this top-down binding passing using rules to be executed in a bottom-up

fashion. Therefore, we can begin by restricting our attention to the bound

arguments and use the following rule: sg(X) parent(XP; X); sg(XP). Then,

we observe that the top-down process where bindings are passed from X to XP

through parent can be emulated by the bottom-up execution of the magic

rule m:sg(XP) m:sg(X); parent(XP; X); the rule is constructed from the last

one by exchanging the head with the recursive goal (and adding the pre�x

\m."). Finally, as the exit rule for the magic predicate, we add the fact

m:sg(marc), where marc is the query constant.

In summary, the magic predicate m:sg is computed as shown by the �rst

two rules in Example 9.14. Example 9.14 also shows how the original rules

are rewritten with the addition of the magic goal m:sg to restrict the bottom-

up computation.

Example 9.14 The magic sets method applied to Example 9.13

m:sg(marc):

m:sg(XP) m:sg(X); parent(XP; X):

sg
0(X; X) m:sg(X):

sg
0(X; Y) parent(XP; X); sg0(XP; YP); parent(YP; Y); m:sg(X):

?sg0(marc; Z):

Observe that, in Example 9.14, the exit rule has become safe as a result

of the magic sets rewriting, since only people who are ancestors of marc

are considered by the transformed rules. Moreover, the magic goal in the

recursive rule is useful in narrowing the search because it eliminates people

who are not ancestors of marc.

Following our strict strati�cation approach, the �xpoint for the magic

predicates will be computed before that of the modi�ed rules. Thus, the

magic sets method can be viewed as an emulation of the top-down computa-

tion through a cascade of two �xpoints, where each �xpoint is then computed

e�ciently using the di�erential �xpoint computation.

The �xpoint computation works well even when the graph representing

parent is a directed acyclic graph (DAG) or contains directed cycles. In

the case of a DAG, the same node and its successors are visited several

times using SLD-resolution. This duplication is avoided by the �xpoint

computation, since every new result is compared against those previously

memorized. In the presence of directed cycles, SLD-resolution ounders in

an in�nite loop, while the magic sets method still works.
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An additional virtue for the magic sets method is its robustness, since

the method works well in the presence of multiple recursive rules and even

nonlinear rules (provided that the binding passing property discussed in

Section 9.6 holds).

One problem with the magic sets method is that the computation per-

formed during the �rst �xpoint might be repeated during the second �xpoint.

For the example at hand, for instance, the ancestors of marc are computed

during the computation of ms:sg and revisited again as descendants of those

ancestors in the computation of sg0. The counting method and the supple-

mentary magic sets technique discussed next address this problem.

9.5.3 The Counting Method

The task of �nding people who are of the same generation as marc can be

reexpressed as that of �nding the ancestors of marc and their levels, where

marc is a zero-level ancestor of himself, his parents are �rst-generation (i.e.,

�rst-level) ancestors, his grandparents are second-generation ancestors, and

so on. This computation is performed by the predicate sg up in Example

9.15:

Example 9.15 Find ancestors of marc, and then their descendants

sg up(0; marc):

sg up(J+ 1; XP) parent(XP; X); sg up(J; X):

sg dwn(J; X) sg up(J; X):

dwn(J� 1; Y) sg dwn(J; YP); parent(YP; Y):

?dwn(0; Z):

Here, we have used sg up to replace the top-down computation in the

original example; thus, sg up computes the ancestors of marc while increas-

ing the level of ancestors. Then, the original exit rule (every person is of the

same generation as himself) was used to switch to the computation of de-

scendants. This computation is performed by sg dwn, which also decreases

the level counter at each application of the recursive rule. Once we return

to level zero, we have a person who is of the same generation as marc, as

per the modi�ed query goal in Example 9.15. Here we have two �xpoint

computations, where the second �xpoint does not duplicate the �rst com-

putation, except for reversing the original counting of levels. It should be

understood that, while the meaning of our same-generation example helps

us to recognize the equivalence between the original program and the rewrit-

ten program, this equivalence nevertheless holds for all programs that obey

the same patterns of bound arguments. As discussed in later sections, an
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analysis of patterns of bound arguments that occur during a top-down com-

putation is performed by the compiler to decide the applicability of methods

such as magic sets or counting, and to implement these methods by rewriting

the original rules into modi�ed rules that yield the same query results.

The counting method mimics the original top-down SLD-resolution to

such an extent that it also shares some of its limitations. In particular, cycles

in the database will throw the rewritten rules into a perpetual loop; in fact,

if sg up(J; XP) is true and XP is a node in the loop, then sg up(J + K; XP),

with K the length of the cycle, holds as well.

Another problem with counting is its limited robustness, since for more

complex programs, the technique becomes inapplicable or requires several

modi�cations. For instance, let us revise Example 9.13 by adding the goal

XP 6= YP to the recursive rule, to avoid the repeated derivation of people who

are of the same generation as themselves. Then, the rules de�ning sg up

must be modi�ed to memorize the values of XP, since these are needed in the

second �xpoint. By contrast, the supplementary magic technique discussed

next disregards the level information and instead relies on the systematic

memorization of results from the �rst �xpoint, to avoid repeating the same

computation during the second �xpoint.

9.5.4 Supplementary Magic Sets

In addition to the magic predicates, supplementary predicates are used

to store the pairs bound-arguments-in-head/bound-arguments-in-recursive-

goal produced during the �rst �xpoint. For instance, in Example 9.16, we

compute spm:sg, which is then used during the second �xpoint computation,

since the join of spm:sg with sg
0 in the recursive rule returns the memorized

value of X for each new XP.

Example 9.16 The supplementary magic method applied to Ex-

ample 9.13

m:sg(marc):

m:sg(XP) m:sg(X); parent(XP; X):

spm:sg(X; XP) parent(XP; X); m:sg(X):

sg
0(X; X) m:sg(X):

sg
0(X; Y) sg

0(XP; YP); spm:sg(X; XP); parent(YP; Y):

?sg0(marc; Z):

The supplementary magic rules used in Example 9.16 are in a form that

illustrates that this is a re�nement of the basic magic sets method previously
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described, and in fact the two terms are often used as synonyms. Frequently,

the magic predicate and the supplementary magic predicate are written in

a mutually recursive form. Thus, for Example 9.16, we have the following

rules:

Example 9.17 The magic and supplementary magic rules for 9.13

m:sg(marc):

spm:sg(X; XP) m:sg(X); parent(XP; X)

m:sg(XP) spm:sg(X; XP):

To better understand how the method works, let us revise the previous

example. Say that we only want to search up to kth generations where the

parents and their children lived in the same state. Then, we obtain the

following program:

Example 9.18 People who are of the same generation through

common ancestors who are less than 12 levels re-

mote and always lived in the same state

?stsg(marc; 12; Z):

stsg(X; K; Y) parent(XP; X); K > 0; KP = K� 1;

born(X; St); born(XP; St);

stsg(XP; KP; YP);

parent(YP; Y):

stsg(X; K; X):

Given that the �rst two arguments of stsg are bound, the supplementary

magic method yields:

Example 9.19 The supplementary magic method for Example 9.18

m:stsg(marc; 12):

spm:stsg(X; K; XP; KP) m:stsg(X; K);

parent(XP; X); K > 0; KP = K� 1;

born(X; St); born(XP; St):

m:stsg(X; K) spm:stsg(X; K; XP; KP):

stsg(X; K; X) m:stsg(X; K):

stsg(X; K; Y) stsg(XP; KP; YP); spm:stsg(X; K; XP; KP);

parent(YP; Y):
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As illustrated by this example, not all the bound arguments are memo-

rized. Only those that are needed for the second �xpoint are stored in the

supplementary magic relations. In our case, for instance, St is not included.

Because of its generality and robustness, the supplementary magic tech-

nique is often the method of choice in deductive databases. In fact, the

method works well even when there are cycles in the underlying database.

Moreover, the method entails more exibility with arithmetic predicates.

For instance, the expression KP = K�1 is evaluated during the �rst �xpoint,

where K is given and the pair (K; KP) is then memorized in the supplementary

relations for use in the second �xpoint. However, with the basic magic sets

method from the second �xpoint, K can only be computed from the values

of KP taken from �stsg(XP; KP; YP), provided that the equation KP = K � 1

is �rst solved for K. Since this is a simple equation, solving it is a simple

task for a compiler; however, solving more general equations might either be

very di�cult or impossible. An alternative approach consists in using the

arithmetic equality as is, by taking each value of K from the magic set and

computing K � 1. However, this computation would then be repeated with

no change at each step of the second �xpoint computation. The use of sup-

plementary magic predicates solves this problem in a uniform and general

way since the pairs K; KP are stored during the �rst �xpoint and then used

during the second �xpoint.

The supplementary magic method can be further generalized to deal with

nonlinear rules, including nonlinear rules as discussed in the next section (see

also Exercise 9.7).

9.6 Compilation and Optimization

Most deductive database systems combine bottom-up techniques with top-

down execution. Take for instance the at parts program shown in Example

9.3, and say that we want to print a list of part numbers followed by their

weights using the following query: ?part weight(Part; Weight). An execu-

tion plan for this query is displayed by the rule-goal graph of Figure 9.1.

The graph depicts a top-down, left-to-right execution, where all the pos-

sible uni�cations with rule heads are explored for each goal. The graph shows

the names of the predicates with their bound/free adornments positioned as

superscripts. Adornments are vectors of f or b characters. Thus, a kth char-

acter in the vector being equal to b or f denotes that the kth argument in the

predicate is respectively bound or free. An argument in a predicate is said

to be bound when all its variables are instantiated; otherwise the argument

is said to be free, and denoted by f.
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Figure 9.1: The rule-goal graph for Example 9.3

9.6.1 Nonrecursive Programs

The rule-goal graph for a program P is denoted rgg(P ). The rule-goal graph

for a nonrecursive program is constructed as follows:

Algorithm 9.11 Construction of the rule-goal graph rgg(P ) for a nonre-

cursive program P .

1. Initial step: The query goal is adorned according to the constants and

deferred constants (i.e., the variables preceded by $), and becomes the

root of rgg(P ).

2. Bindings passing from goals to rule heads: If the calling goal g uni�es

with the head of the rule r, with mgu , then we draw an edge (labeled

with the name of the rule, i.e., r) from the adorned calling goal to

the adorned head, where the adornments for h(r) are computed as

follows: (i) all arguments bound in g are marked bound in h(r); (ii)

all variables in such arguments are also marked bound; and (iii) the

arguments in h(r) that contain only constants or variables marked

bound in (ii) are adorned b, while the others are adorned f .

For instance, say that our goal is g = p(f(X1); Y1; Z1; a), and the head

of r is h(r) = p(X2; g(X2; Y2); Y2;W2). (If g and h(r) had variables

in common, then a renaming step would be required here.) A most

general uni�er exists for the two:  = fX2=f(X1); Y1=g(f(X1); Y2);

Z1=Y2;W2=ag; thus, bindings might be passed from this goal to this
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head in a top-down execution, and the resulting adornments of the

head must be computed.

The uni�ed head is h(r) = p(f(X1); g(f(X1); Y2); Y2; a). For instance,

say that the goal was adorned pbffb; then variables in the �rst argument

of the head (i.e., X1) are bound. The resulting adorned head is pbffb,

and there is an edge from p
bffb to pbffb  . But if the adorned goal is

p
fbfb, then all the variables in the second argument of the head (i.e.,

X1; Y2) are bound. Then the remaining arguments of the head are

bound as well. In this case, there is an edge from the adorned goal

p
fbfb to the adorned head p

bbbb  .

3. Left-to-right passing of bindings to goals: A variable X is bound after

the nth goal in a rule, if X is among the bound head variables (as for

the last step), or if X appears in one of the goals of the rule preceding

the nth goal.

The (n+ 1)th goal of the rule is adorned on the basis of the variables

that are bound after the nth goal.

For simplicity of discussion, we assume that the rule-goal graph for a

nonrecursive program is a tree, such as that of Figure 9.1. Therefore, rather

than drawing multiple edges from di�erent goals to the same adorned rule

head, we will duplicate the rule head to ensure that a tree is produced, rather

than a DAG.

The rule-goal graph determines the safety of the execution in a top-down

mode and yields an overall execution plan, under the simplifying assumption

that the execution of a goal binds all the variables in the goal. The safety

of the given program (including the bound query goal) follows from the fact

that certain adorned predicates are known to be safe a priori.

For instance, base predicates are safe for every adornment. Thus, partfff

is safe. Equality and comparison predicates are treated as binary predicates.

The pattern �bb is safe for � denoting any comparison operator, such as � or

>. Moreover, there is the special case of =bf or =fb where the free argument

consists of only one variable; in either case the arithmetic expression in the

bound argument can be computed and the resulting value can be assigned

to the free variable.2

Then, we have the following de�nition of safety for a program whose

rule-goal graph is a tree:

2These represent basic cases that can be treated by any compiler. As previously indi-

cated, a sophisticated compiler could treat an expression, such as 2 �X + 7 = 35, as safe,

if rewriting it as X = (35 � 7)=2 is within the capabilities of the compiler.
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De�nition 9.12 Let P be a program with rule-goal graph rgg(P ), where

rgg(P ) is a tree. Then P is safe if the following two conditions hold:

(i) Every leaf node of rgg(P ) is safe a priori, and

(ii) every variable in every rule in rgg(P ) is bound after the last goal.

Given a safe rgg(P ), there is a simple execution plan to compute rules

and predicates in the program. Basically, every goal with bound adornments

generates two computation phases. In the �rst phase, the bound values of a

goal's arguments are passed to its de�ning rules (its children in the rule-goal

graph). In the second phase, the goal receives the values of the f -adorned

arguments from its children. Only the second computation takes place for

goals without bound arguments. Observe that the computation of the heads

of the rules follows the computation of all the goals in the body. Thus, we

have a strict strati�cation where predicates are computed according to the

postorder traversal of the rule-goal graph.

Both phases of the computation can be performed by a relational algebra

expression. For instance, the set of all instances of the bound arguments can

be collected in a relation and passed down to base relations, possibly using

the magic sets technique|resulting in the computation of semijoins against

the base relations. In many implementations, however, each instance of

bound arguments is passed down, one at a time, to the children, and then

the computed values for the free arguments are streamed back to the goal.

9.6.2 Recursive Predicates

The treatment of recursive predicates is somewhat more complex because

a choice of recursive methods must be performed along with the binding

passing analysis.

The simplest case occurs when the goal calling a recursive predicate has

no bound argument. In this case, the recursive predicate, say p, and all the

predicates that are mutually recursive with it, will be computed in a single

di�erential �xpoint. Then, we fall back into the treatment of rules for the

nonrecursive case, where

1. step 3 of Algorithm 9.11 is performed assuming that rule heads have

no bound argument

2. safety analysis is performed by treating the recursive goals (i.e., p and

predicates mutually recursive with it) as safe a priori|in fact, they

are bound to the values computed in the previous step.

When the calling goal has some bound arguments, then, a binding passing

analysis is performed to decide which method should be used for the case at
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Figure 9.2: Binding passing analysis for the program of Example 9.19

hand. After this analysis, the program is rewritten according to the method

selected.

Figure 9.2 illustrates how the binding passing analysis is performed on

recursive rules. The binding passing from a goal to the recursive rule heads

remains the same as that used for the nonrecursive case (step 2 in Algorithm

9.11). There are, however, two important di�erences. The �rst is that we

allow cycles in the graph, to close the loop from a calling recursive goal

to a matching adorned head already in the graph. The second di�erence

is that the left-to-right binding passing analysis for recursive rules is more

restrictive than that used at step 3 of Algorithm 9.11; only particular goals

(called chain goals) can be used.

An adorned goal q in a recursive rule r is called a chain goal when it

satis�es the following conditions:

1. SIP independence of recursive goals: q is not a recursive goal (i.e., not

the same predicate as that in the head of r, nor a predicate mutually

recursive with q; however, recursive predicates of lower strata can be

used as chain goals).

2. Selectivity: q
 has some argument bound (according to the bound

variables in the head of r and the chain goals to the left of q).

3. Safety: q is a safe goal.3

3If q is not a recursive predicate, then safety is de�ned above. If q is a recursive goal,

then it belongs to a lower stratum; therefore, safety can be determined independently of

the safety of q.
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The basic idea behind the notion of chain goals is that the binding in

the head will have to reduce the search space. Any goal that is called with

all its adornment free will not be bene�cial in that respect. Also, there is

no sideway information passing (SIP) between two recursive goals; bindings

come only from the head through nonrecursive goals.

The algorithm for adorning the recursive predicates and rules constructs

a set of adorned goals A starting from the initial query goal (or a calling

goal) q that has adornment , where  contains some bound argument.

Algorithm 9.13 Binding passing analysis for recursive predicates

1. Initially A = fqg, with q
 the initial goal, where q is a recursive

predicate and  is not a totally free adornment.

2. For each h 2 A, pass the binding to the heads of rules de�ning q.

3. For each recursive rule, determine the adornments of its recursive goals

(i.e., of q or predicates mutually recursive with q).

4. If the last step generated adornments not currently in A, add them to

A and resume from step 2. Otherwise halt.

The calling goal g is said to have the binding passing property when A

does not contain any recursive predicate with totally free adornment. In

this case, we say that g has the unique binding passing property when A

contains only one adornment for each recursive predicate.

When the binding passing property does not hold, then a totally free

adornment occurs, and mutually recursive predicates must be computed as if

the calling goal had no bound arguments. Otherwise, the methods described

in the previous sections are applicable, and the recursive program is rewritten

according to the method selected.

9.6.3 Selecting a Method for Recursion

For simplicity of discussion, we assume that the unique binding passing

property holds and concentrate on the rewriting for the magic sets method,

which can then be used as the basis for other methods.

Let q 2 A, and r be a recursive rule de�ning q. Then, if the recursive

rank of r is k, then there are k magic rules corresponding to r: one for each

recursive goal in r. If p is one of these goals, then the head of the magic rule

is named m:p, and has as arguments the arguments of p bound according to

q
 . The body of the magic rule consists of the following goals: the recursive

goal m:q with the bound arguments in q , and the chain goals of r.
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The (one and only) exit rule for all the magic predicates is actually the

fact m:g0, where g0 is obtained from the calling goal by eliminating its free

arguments.

Finally, each original rule r is augmented with the addition of a magic

goal as follows. Say that q is the head of r, q 2 A, and q0 is obtained from

h(r) by eliminating all the arguments that are free (i.e., denoted by an f in

); then, m:q0 is the magic goal added to r.

The rewriting methods for supplementary magic predicates, and for the

counting method, can be derived as simple modi�cations of the templates for

magic sets. While the counting method is limited to the situation where we

have only one recursive rule and this rule is linear, the other two methods are

applicable whenever the binding passing property holds (see Exercise 9.7).

The magic sets method can also be used as the basis for detecting and

handling the special cases of left-linear and right-linear rules. For instance,

if we write the magic rules for Example 9.8, we obtain:

m:anc(tom):

m:anc(Old) m:anc(Old):

Obviously the recursive magic rule above is trivial and can be eliminated.

Since the magic relation anc now contains only the value tom, rather than

appending the magic predicate goal to the original rules, we can substitute

this value directly into the rules. It is simple for a compiler to recognize the

situation where the body and the head of the rule are identical, and then to

eliminate the magic rule and perform the substitution.

Consider now the application of the magic sets method to Example 9.8.

We obtain

m:anc(tom):

m:anc(Mid) parent(Old; Mid); m:anc(Old):

anc
0(Old; Young) m:anc(Old); parent(Old; Young):

anc
0(Old; Young) parent(Old; Mid); anc0(Mid; Young);

m:anc
0(Old):

?anc0(tom; Young):

Observe that the recursive rule de�ning anc
0 here plays no useful role.

In fact, the second argument of anc0 (i.e., Young) is simply copied from the

goal to the head of the recursive rule. Moreover, once this second argument

is dropped, then this rule simply revisits the magic set computation leading

back to tom. Thus, every value of Young produced by the exit rule satis�es

the query. Once the redundant recursive rule is eliminated, we obtain the

following program:
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m:anc(tom):

m:anc(Mid) m:anc(Old); parent(Old; Mid):

anc
0(Old; Young) m:anc(Old); parent(Old; Young):

?anc0(tom; Young):

In general, for the recursive rule to be dropped, the following two con-

ditions must hold: (1) all the recursive goals in the recursive rule have been

used as chain goals (during the binding passing analysis), and (2) the free

arguments in the recursive goal are identical to those of the head. These are

simple syntactic tests for a compiler to perform. Therefore, the transforma-

tion between right-linear recursion and left-linear recursion can be compiled

as a special subcase of the magic sets method.

9.6.4 Optimization Strategies and Execution Plan

Several variations are possible in the overall compilation and optimization

strategy described in the previous sections. For instance, the requirement of

having the unique binding passing property can be relaxed easily (see Exer-

cise 9.9). The supplementary magic method can also be generalized to allow

the passing of bindings between recursive goals in the same rule; however,

the transformed programs so produced can be complex and ine�cient to

execute.

A topic that requires further research is query optimization. Most rela-

tional databases follow the approach of estimating the query cost under all

possible join orders and then selecting the plan with the least-cost estimate.

This approach is not commonly used in deductive database prototypes be-

cause of its prohibitive cost for large programs and the di�culty of obtaining

reliable estimates for recursive predicates. Therefore, many systems use in-

stead simple heuristics to select an order of execution for the goals. For

instance, to select the next goal, precedence is given to goals that have more

bound arguments and fewer unbound arguments than the other goals.

In other systems, the order of goal execution is that in which they appear

in the rule (i.e., the Prolog convention also followed in the rule-goal graph

of Figure 9.1). This approach leaves the control of execution in the hands

of the programmer, with all the advantages and disadvantages that follow.

A promising middle ground consists of using the optimization techniques

of relational systems for simple rules and queries on base predicates, while

letting the programmer control the execution of more complex programs, or

predicates more remote from the base predicates.
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Although di�erent systems often use a di�erent mix of recursive meth-

ods, they normally follow the same general approach to method selection.

Basically, the di�erent techniques, each with its speci�c applicability pre-

conditions, are ranked in order of desirability; the �rst applicable method in

the list is then selected. Therefore, the binding passing property is tested

�rst, and if this is satis�ed, methods such as those for left-linear and right-

linear recursion are tried �rst; then if these fail, methods such as magic sets

and supplementary magic are tried next. Several other techniques have been

proposed for recursion, and novel approaches and re�nements are being pro-

posed frequently|although it is often di�cult to evaluate the comparative

e�ectiveness of the di�erent techniques.

An additional generalization that should be mentioned allows some ar-

guments of a goal to remain uninstantiated after its execution. In this ap-

proach, variables not bound by the execution of the goal will need to be

bound by later goals, or will be returned to the head of the rule, and then

to the calling goal, as unbound variables.

In addition to the global techniques discussed above, various optimiza-

tions of a local and specialized nature can be performed on Datalog-like

languages. One such technique consists in avoiding the generation of multi-

ple bindings for existential variables, such as variables that occur only once

in a rule. Techniques for performing intelligent backtracking have also been

used; these can, for example, simulate multiway joins in a tuple-at-a-time

execution model. Therefore, many of the local optimization techniques used

are speci�c to the low-level execution model adopted by the system; this, in

turn, depends on many factors, including whether the system is primarily de-

signed for data residing on secondary storage or data already loaded in main

memory. These alternatives have produced the assortment of techniques and

design choices explored by current deductive database prototypes.

9.7 Recursive Queries in SQL

The new SQL3 standards include support for recursive queries. For instance,

the BoM program of Example 8.15 is expressible in SQL3, using the view

construct as follows:

Example 9.20 Recursive views in SQL3

CREATE RECURSIVE view all subparts(Major, Minor) AS

SELECT PART SUBPART

FROM assembly

UNION
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SELECT all.Major assb.SUBPART

FROM all subparts all, assembly assb

WHERE all.Minor= assb.PART

The SELECT statement before UNION is obviously equivalent to the exit

rule in Example 8.15, while the SELECT statement after UNION corre-

sponds to the recursive rule. Therefore we will refer to them as exit select

and recursive select, respectively.

Since all subparts is a virtual view, an actual query on this view is needed

to materialize the recursive relation or portions thereof. For instance, the

query of Example 9.21 requests the materialization of the whole relation.

Example 9.21 Materialization of the view of Example 9.20

SELECT *

FROM all subparts

The WITH construct provides another way, and a more direct one, to

express recursion in SQL3. For instance, a query to �nd all the superparts

using 'top tube' can be expressed as follows:

Example 9.22 Find the parts using 'top tube'

WITH RECURSIVE all super(Major, Minor) AS

( SELECT PART, SUBPART

FROM assembly

UNION

SELECT assb.PART, all.Minor

FROM assembly assb, all super all

WHERE assb.SUBPART = all.Major

)

SELECT *

WHERE Minor = 'top tube'

9.7.1 Implementation of Recursive SQL Queries

The compilation techniques developed for Datalog apply directly to recursive

SQL queries. For instance, the query of Example 9.21 on the view de�ned in

Example 9.20 requires the materialization of the whole transitive closure, and

can thus be implemented e�ciently using the di�erential �xpoint Algorithm

9.5. Then, TE(S
0) and TR(S

0) are, respectively, computed from the exit

select and the recursive select in Example 9.20. Here too, the computation

of TR(S
0)� S0 will be improved using the di�erential �xpoint technique. In
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fact, this step is simple to perform since there is only one recursive relation in

the FROM clause of Example 9.20; therefore, this is a case of linear recursion.

Thus, the recursive relation all subparts in the FROM clause is replaced with

�all subparts, which contains new tuples generated in the previous iteration

of Algorithm 9.5.

Consider now Example 9.22. This requires the passing of the condition

Minor= 'top tube' into the recursive SQL query de�ned using WITH. Now,

the recursive select in Example 9.22 uses right-linear recursion, whereby

the second argument of the recursive relation is copied unchanged by TR.

Thus, the condition Minor = 'top tube' can simply be attached unchanged

to theWHERE clause of the exit select and the recursive select, yielding the

following equivalent SQL program:

Example 9.23 Specialization of the query of Example 9.22

WITH RECURSIVE all super(Major, Minor) AS

( SELECT PART, SUBPART

FROM assembly

WHERE SUBPART = 'top tube'

UNION

SELECT assb.PART, all.Minor

FROM assembly assb, all super all

WHERE assb.SUBPART = all.Major

AND all.Minor = 'top tube'

)

SELECT *

However, say that the same query is expressed against the virtual view

of Example 9.20, as follows:

SELECT *

FROM all subparts

WHERE Minor = 'top tube'

Since all subparts is de�ned in Example 9.20 using left-linear recursion,

the addition of the condition Minor = 'top tube' to the recursive select would

not produce an equivalent query. Instead, the SQL compiler must trans-

form the original recursive select into its right-linear equivalent before the

condition Minor = 'top tube' can be attached to the WHERE clause. The

compilation techniques usable for such transformations are basically those

previously described for Datalog.
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The recursive extensions of SQL3, discussed here, are based on the pro-

posal by Finkelstein, Mattos, Mumick, and Pirahesh [168].

9.9 Exercises

9.1. Use the emp all mgrs(Eno, AllManagers) relation of Exercise 8.12

to construct a combined list of managers for employees 'Joe Doe' and

'Tom Jones'. First write the rules to perform a bottom-up list append

of the manager list for the �rst employee with that of second employee.

Then re�ne this program to ensure that no duplicate manager is in-

serted in the list.

9.2. A better-known list append is the top-down one used in Prolog. Write

(top-down) recursive rules to compute app(L1; L2; L3), which appends

two lists L1 and L2, giving L3.

9.3. Write Prolog and Datalog rules to generate all positive integers up to

a given integer K|in ascending and descending order.

9.4. Write nonlinear Prolog rules to compute the �rstK Fibonacci numbers

in a bottom-up fashion.

9.5. Write linear rules to compute e�ciently the �rst K Fibonacci numbers

in Prolog. Solve the same problem for Datalog.

9.6. Describe how the binding passing analysis will be performed on Exer-

cise 9.2, and which compilation methods can be used. Transform the

original programs according to compilation methods selected.

9.7. An arithmetic expression such as y� y+ c might be parsed and repre-

sented internally as a complex term such as

plus(times(var(y); var(y)); cost(c)):

Write rules to perform a symbolic di�erentiation of such expressions.

Thus our original query goal might be ?derivation($Expr; Derivt).

If the previous expression is given as the �rst argument, the second

argument returned should be

plus(plus(times(cost(1); var(y)); times(var(y); cost(1)); cost(0))):

Just give the basic top-down rules for addition and multiplication.

The most direct formulation requires nonlinear rules that cannot be

supported in Prolog; explain why.
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9.8. Perform the binding analysis for Exercise 9.7, and show how this leads

to the application of the magic sets method or supplementary magic

technique. Rewrite the original programs according to both methods.

9.9. Explain how the magic sets and related methods are also applicable to

programs that have the binding passing property, but not the unique

binding passing property. Apply the magic sets method to the follow-

ing example:

?sg(marc; Who):

sg(X; Y) parent(XP; X); sg(YP; XP); parent(YP; Y):

sg(A; A):
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Chapter 10

Database Updates and

Nonmonotonic Reasoning

Two important problems have been left open in previous chapters. One

is how to relax the restriction that negation and other nonmonotonic con-

structs can only appear in strati�ed programs, which represents a serious

limitation in many practical applications. The other problem is that, so

far, we have neglected the dynamic aspects of database systems, such as

database updates and active database rules. In this chapter, we �ll these

lacunas and develop a uni�ed approach to reasoning with nonmonotonic

knowledge, nondeterministic constructs, database updates, active rules, and

database histories.

10.1 Nonmonotonic Reasoning

The issue of nonmonotonic reasoning is a di�cult problem that databases

share with several other areas, including arti�cial intelligence, knowledge

representation, and logic programming. Much previous research has focused

on the problems of correct semantics and logical consistency. To address the

e�ciency and scalability requirements of databases, we will also stress issues

such as computational complexity, expressive power, amenability to e�cient

implementation, and usability.

Negation represents the quintessential nonmonotonic construct; as we

shall see later, issues regarding other nonmonotonic constructs, such as set

aggregates or updates, can be reduced to issues regarding negation.

Most of the technical challenges posed by negation follow from the fact

that information systems normally do not store negative information ex-
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plicitly. Rather, they normally store only positive information, and negative

information is derived implicitly via some form of default, such as the closed-

world assumption. For instance, in our university database of Example 8.1,

we see that only courses actually taken by students are stored. Thus, if for a

certain student there is no \cs123" entry in the database, then the conclusion

follows that the student has not taken the course.

Two di�erent views of the world are possible.

� Open world: What is not part of the database or the program is as-

sumed to be unknown.

� Closed world: What is not part of the database or the program is

assumed to be false.

Databases and other information systems adopt the closed-world assump-

tion (CWA). Thus, if p is a base predicate with n arguments, then the CWA

prescribes that :p(a1; : : : ; an) holds i� p(a1; : : : ; an) is not true, that is, is not

in the database. This assumption is natural and consistent, provided that a

unique name axiom is also satis�ed. The unique name assumption speci�es

that two constants in the database cannot stand for the same semantic ob-

ject. According to the unique name assumption, for instance, the absence of

coolguy(0Clark Kent
0) from the database implies :coolguy(0Clark Kent

0),

even though the database contains a fact coolguy(0Superman0). This nega-

tive conclusion does not follow in a system that does not adopt the unique

name assumption, and, for instance, treats 0
Superman

0 and 0
Clark Kent

0 as

di�erent references to the same underlying entity.1

As we shall see next, the extension of the CWA to programs where rules

contain negation might lead to inconsistencies. The CWA for a positive

program P is as follows:

De�nition 10.1 Let P be a positive program; then for each atom a 2 BP ,

(i) a is true i� a 2 T
"!

P
(;), and

(ii) :a is true i� a =2 T
"!

P
(;).

De�nition 10.1 basically states that every conclusion derivable from the

given program is true, and everything else is false. This de�nition is consis-

tent when P is a positive program. However, contradictions may arise when

P is a general program where rules are allowed to contain negated goals.

1Lois Lane's unique name assumption has provided the theme and romantic plot for

many Superman movies. Also Herbrand interpretations follow this approach by letting

constants represent themselves.
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Consider for instance the classical paradox of the village where the barber

shaves everyone who does not shave himself:

Example 10.1 Every villager who does not shave himself is shaved

by the barber

shaves(barber; X) villager(X);:shaves(X; X):

shaves(miller; miller):

villager(miller):

villager(smith):

villager(barber):

There is no problem with villager(miller), who shaves himself, and

therefore does not satisfy the body of the �rst rule. For villager(smith),

given that shaves(smith; smith) is not in our program, we can assume that

:shaves(smith; smith). Then, the body of the rule is satis�ed, and the

conclusion shaves(barber; smith) is reached. There is no problem with this

conclusion, since it is consistent with all the negative assumptions previously

made.

However, consider villager(barber). If we make the assumption that

:shaves(barber; barber), the rule yields shaves(barber; barber), which

directly contradicts the initial assumption. However, if we do not assume

:shaves(barber; barber), then we cannot derive shaves(barber; barber)

using this program. Therefore, by the CWA policy we must conclude that

:shaves(barber; barber), which is again a contradiction. There is no way

out of this paradox, and thus, there is no reasonable semantics for self-

contradictory programs, such as that of Example 10.1, under the CWA. The

stable model semantics discussed next characterizes programs that are free

of such contradictions.

De�nition 10.2 Stability transformation. Let P be a program and I � BP

be an interpretation of P . Then groundM (P ) denotes the program obtained

from ground(P ) by the following transformation, called the stability trans-

formation:

1. Remove every rule having as a goal some literal :q with q 2 I.

2. Remove all negated goals from the remaining rules.

Example 10.2 A program P = ground(P )

p :q

q  :p
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For the program in Example 10.2, the stability transformation yields the

following:

For I = ;, groundI(P ) is p: q:

For I = fpg, groundI(P ) is p:

For I = fp; qg, groundI(P ) is the empty program.

De�nition 10.3 Stable models. Let P be a program with model M . M is

said to be a stable model for P when M is the least model of groundM (P ).

Observe that groundM (P ) is a positive program, by construction. So, it

has a least model that is equal to T "!(;), where T here denotes the immediate

consequence operator of groundM (P ).

Every stable model for P is a minimal model for P and a minimal �xpoint

for TP ; however, minimal models or minimal �xpoints need not be stable

models, as in the example that follows:

Example 10.3 M = fag is the only model and �xpoint for this

program

r1 : a :a:

r2 : a a:

M is the only model and �xpoint for the program in Example 10.3. But

groundM (P ) contains only rule r2; thus, its least model is the empty set,

and M is not a stable model.

A given program can have no stable model, a unique stable model, or

multiple stable models. For instance, the program in Example 10.1 has no

stable model, but it has a unique stable model after we eliminate the fact

villager(barber). The program of Example 10.3 has no stable model. The

program of Example 10.2 has two stable models: M1 = fpg and M2 = fqg.

Thus there are two symmetric ways to give a logical meaning to this program:

one where p is true and q is false, and the other where p is false and q is

true. Since either solution can be accepted as the meaning of the program,

we see that stable model semantics also brings the notion of nondeterminism

to logic-based languages. This topic will be revisited in later sections.

The notion of stable models can be de�ned directly using a modi�ed

version of the immediate consequence operator (ICO) as follows: With r

being a rule of P , let h(r) denote the head of r, gp(r) denote the set of

positive goals of r, and gn(r) denote the set of negated goals of r without

their negation sign. For instance, if r : a  b;:c;:d:, then h(r) = a,

gp(r) = fbg, and gn(r) = fc; dg.
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De�nition 10.4 Let P be a program and I � BP . Then the explicit nega-

tion ICO for P under a set of negative assumptions N � BP is de�ned as

follows:

�P (N)(I) = fh(r) j r 2 ground(P ); gp(r) � I; gn(r) � Ng

We will keep the notation TP to denote the implicit negation ICO of P ,

de�ned as follows:

TP (I) = �
P (I)(I); where I = BP � I

While � can also be viewed as a two-place function (on I and N), in the

following theorem we view it as a function of I only, since N is kept constant

(the proof of the theorem follows directly from the de�nitions):

Theorem 10.5 Let P be a logic program with Herbrand base BP and M =

BP �M . Then, M is a stable model for P i�

�
"!

P (M)
(;) =M

Thus, Theorem 10.5 states that M is a stable model if it can be obtained

as the !-power of the explicit negation ICO, where the set of false atoms is

kept constant and equal to the set of atoms not in M . This theorem can be

used to check whether an interpretation I is a stable model without having

�rst to construct groundP (I). Furthermore, the computation of the !-power

of the positive consequence operator has polynomial data complexity (see

Exercise 10.1); thus, checking whether a given model is stable can be done

in polynomial time. However, deciding whether a given program has a stable

model is, in general, NP-complete; thus, �nding any such model isNP-hard.

Therefore, much research work has been devoted to the issue of �nding

polynomial-time algorithms that compute stable models for classes of pro-

grams of practical interest. The challenges posed by this problem can be

appreciated by observing how techniques, such as SLD-resolution, that work

well for positive programs run into di�culties when faced with programs

with negation.

Prolog and other top-down systems use SLD-resolution with negation by

failure (SLD-NF) for negative programs. In a nutshell, SLD-NF operates as

follows: When presented with a goal :g, SLD-NF tries instead to prove g.

Then, if g evaluates to true, :g evaluates to false; however, if g evaluates to

false, :g evaluates to true. The answers returned by the SLD-resolution are

correct in both these cases, but there is also the case where SLD-resolution
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ounders in an in�nite loop, and then no answer is returned. Unfortunately,

this case is common when the Herbrand universe is in�nite and can also oc-

cur when the universe is �nite. For instance, if the program consists of only

one rule p p, then the query ?:p ounders in an in�nite loop and SLD-NF

never returns any answer. Since the least model of the program p p is the

empty set, ?:p should evaluate to true under the CWA. Therefore, this ex-

ample illustrates how SLD-NF does not provide a complete implementation

of the CWA even for simple positive programs. A similar problem occurs

when a goal like :anc(marc; mary) is expressed against the program of Ex-

ample 9.5. SLD-NF ounders if marc and mary are nodes in a directed cycle

of a graph corresponding to the parent relation. Both these two queries,

where SLD-NF fails, can be supported by the iterated �xpoint used in the

bottom-up computation of strati�ed programs.

10.2 Strati�cation and Well-Founded Models

Stable model semantics is very powerful, and various nonmonotonic knowl-

edge representation formalisms such as prioritized circumscription, default

theory, and autoepistemic logic can be reduced to it.

But given the exponential complexity of computing a stable model, cur-

rent research is seeking more restrictive classes of programs capable of ex-

pressing the intended applications while having stable models computable in

polynomial time. In this chapter, we consider strati�ed and locally strati�ed

programs, and the notion of well-founded models.

A strati�ed program has a stable model that can be computed using the

iterated �xpoint computation (Algorithm 9.2). Furthermore, we will prove

later that such a model is unique.

Theorem 10.6 Let P be a strati�ed program. Then P has a stable model

that is equal to the result of the iterated �xpoint procedure.

Proof. Let � be a strati�cation for P , and let M be the result of the iter-

ated �xpoint on P according to �. Since the iterated �xpoint on ground(P )

according to � also yields M , let r 2 ground(P ) be a rule used in the latter

computation, where h(r) belongs to a stratum i. If :g is a goal of r, then the

predicate name of g belongs to a stratum lower than i, and thus g cannot

be generated by the iterated �xpoint computation of strata � i. There-

fore, for each rule r used in the iterated �xpoint computation of ground(P ),

r
0 2 groundM (P ), where r

0 is the rule obtained from r by removing its

negated goals. Therefore, the iterated �xpoint computation on the iterated
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�xpoint on groundM (P ) according to � also yields M . Therefore, M is a

stable model. 2

Since the class of strati�ed programs is too restrictive in many applica-

tions, we now turn to the problem of going beyond strati�cation and allowing

the usage of negated goals that are mutually recursive with the head predi-

cates.

10.2.1 Locally Strati�ed Programs

The notion of local strati�cation provides a generalization where atoms are

strati�ed on the basis of their argument values, in addition to the names of

their predicates.

De�nition 10.7 Local strati�cation. A program P is locally strati�able

i� BP can be partitioned into a (possibly in�nite) set of strata S0; S1; : : :,

such that the following property holds: For each rule r in ground(P ) and

each atom g in the body of r, if h(r) and g are, respectively, in strata Si

and Sj, then

(i) i � j if g 2 pg(r), and

(ii) i > j if g 2 ng(r).

Example 10.4 A locally strati�ed program de�ning integers

even(0):

even(s(J)) :even(J):

The program in Example 10.4 has an obvious local strati�cation, ob-

tained by assigning even(0) to S0, even(s(0)) to S1, and so on.

The program in Example 10.5 attempts an alternative de�nition of inte-

gers; this program is not locally strati�ed (see Exercise 10.6).

Example 10.5 A program that is not locally strati�ed

even(0):

even(J) :even(s(J)):

Theorem 10.8 Every locally strati�ed program has a stable model that is

equal to the result of the iterated �xpoint computation.

Advanced Database Systems, Zaniolo, Ceri, Faloutsos, Snodgrass, Subrahmanian and Zicari page 241



242 DB UPDATES AND NONMONOTONIC REASONING

The proof of this last theorem is the same as the proof of Theorem 10.6.

This underscores the conceptual a�nity existing between strati�ed programs

and locally strati�ed programs. The two classes of programs, however, be-

have very di�erently when it comes to actual implementation. Indeed, a

program P normally contains a relatively small number of predicate names.

Thus, the veri�cation that there is no strong component with negated arcs in

pdg(P ) and the determination of the strata needed for the iterated �xpoint

computation are easy to perform at compile-time. However, the question of

whether a given program can be locally strati�ed is undecidable when the

Herbrand base of the program is in�nite. Even when the universe is �nite,

the existence of a stable model cannot be checked at compile-time, since it

often depends on the database content. For instance, in Example 10.1, the

existence of a stable model depends on whether villager(barber) is in the

database.

Much research work has been devoted to �nding general approaches for

the e�cient computation of nonstrati�ed programs. The concept of well-

founded models represents a milestone in this e�ort.

10.2.2 Well-Founded Models

The basic equality lfp(TP ) = T

"!

P
, which was the linchpin of the bottom-up

computation, no longer holds in the presence of negation. One possible solu-

tion to this dilemma is to derive from TP a new operator that is monotonic.

This leads to the notion of alternating �xpoint and well-founded models,

discussed next.

The operator �
"!

P (N)
(;) is monotonic in N . Thus

SP (N) = BP � �
"!

P (N)
(;)

is antimonotonic in N (i.e., SP (N
0) � SP (N) for N 0 � N). Therefore, the

composition of an even number of applications of SP yields a monotonic

mapping, while the composition of an odd number of applications yields an

antimonotonic mapping. In particular,

AP (N) = SP (SP (N))

is monotonic in N . Thus, by Knaster-Tarski's theorem, AP has a least

�xpoint lfp(AP ). Actually, AP might have several �xpoints:

Lemma 10.9 Let (M; M) be a dichotomy of BP . Then, M is a stable

model for P i� M is a �xpoint for SP . Also, every stable model for P is a

�xpoint of AP .

Advanced Database Systems, Zaniolo, Ceri, Faloutsos, Snodgrass, Subrahmanian and Zicari page 242



10.2. STRATIFICATION AND WELL-FOUNDED MODELS 243

Proof. By Theorem 10.5, M is a stable model for P i� �
"!

P (M)
(;) = M .

This equality holds i� BP ��
"!

P (M)
(;) = BP �M =M , i.e., i� SP (M) =M .

Finally, every �xpoint for SP is also a �xpoint for AP . 2

The least �xpoint lfp(AP ) can be computed by (possibly trans�nite)

applications of AP . Furthermore, every application of AP in fact consists

of two applications of SP . Now, since A
"n�1
P

(;) � A

"n

P
(;), the even powers

of SP
A

"n

P
(;) = S

"2�n
P

(;)

de�ne an ascending chain. The odd powers of SP

SP (A
"n

P
(;)) = S

"2�n+1
P

(;)

de�ne a descending chain. Furthermore, it is easy to show that every element

of the descending chain is � than every element of the ascending chain. Thus

we have an increasing chain of underestimates dominated by a decreasing

chain of overestimates. If the two chains ever meet,2 they de�ne the (total)

well-founded model3 for P .

De�nition 10.10 Well-founded model. Let P be a program and W be the

least �xpoint for AP . If SP (W ) =W , then BP�W is called the well-founded

model for P .

BP � SP (M ) = BP �M =M . But BP � SP (M) = �
"!

P (M)
(;).

Theorem 10.11 Let P be a program with well-founded model M . Then M

is a stable model for P , and P has no other stable model.

Proof. The fact that M is a stable model was proven in Lemma 10.9.

Now, by the same lemma, if N is another stable model, then N is also a

�xpoint for AP ; in fact, N �M , since M is the least �xpoint of AP . Thus,

N � M ; but, N � M cannot hold, since M is a stable model, and every

stable model is a minimal model. Thus N =M . 2

The computation of A
"!

P
(;) is called the alternating �xpoint computation.

The alternating �xpoint computation for the program of Example 10.2 is

shown in Example 10.6.

2Including the situation where they meet beyond the �rst in�nite ordinal.
3The term well-founded model is often used to denote the partial well-founded model,

de�ned as having as negated atoms M� = lfp(AP ) and positive atoms M+ = BP �

SP (M
�); thus, the atoms in BP � (M+

[M�) are unde�ned in the partial well-founded

model, while this set is empty in the total well-founded model.
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Example 10.6 The alternating �xpoint computation for Example

10.2

SP (;) = fp; qg

AP (;) = SP (SP (;)) = SP (fp; qg) = ;

Then, the situation repeats itself, yielding

A

"k

P
(;) = AP (;) � SP (A

"k

P
(;))

Since the overestimate and underestimate never converge,

this program does not have a (total) well-founded model.

Indeed, Example 10.2 has two stable models; thus, by Theorem 10.11, it

cannot have a well-founded model.

Strati�ed and locally strati�ed programs always have a well-founded

model (and therefore a unique stable model) that can be computed using

the alternating �xpoint procedure:

Theorem 10.12 Let P be a program that is strati�ed or locally strati�ed.

Then P has a well-founded model.

Proof (Sketch). If P is a program that is strati�ed or locally strati�ed, then

the alternating �xpoint procedure emulates the strati�ed �xpoint procedure.

2

While the notion of a well-founded model is signi�cant from a concep-

tual viewpoint, it does not provide a simple syntactic criterion that the

programmer can follow (and the compiler can exploit) when using negation

in recursive rules, so as to ensure that the �nal program has a clear seman-

tics. The objective of achieving local strati�cation through the syntactic

structure of the rules can be obtained using Datalog1S.

10.3 Datalog1S and Temporal Reasoning

In Datalog1S, predicates have a distinguished argument, called the temporal

argument, where values are assumed to be taken from a discrete temporal

domain. The discrete temporal domain consists of terms built using the

constant 0 and the unary function symbol +1 (written in post�x notation).

For the sake of simplicity, we will write n for

(: : : ((0

n timesz }| {
+1) + 1) : : : + 1)
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Also, if T is a variable in the temporal domain, then T , T +1, and T +n

are valid temporal terms, where T + n is again a shorthand for

(: : : ((T

n timesz }| {
+1) + 1) : : : + 1)

The following Datalog program models the succession of seasons:

Example 10.7 The endless succession of seasons

quarter(0; winter):

quarter(T+ 1; spring) quarter(T; winter):

quarter(T+ 1; summer) quarter(T; spring):

quarter(T+ 1; fall) quarter(T; summer):

quarter(T+ 1; winter) quarter(T; fall):

Therefore, Datalog1S provides a natural formalism for modeling events

and history that occur in a discrete time domain (i.e., a domain isomorphic to

integers). The granularity of time used, however, depends on the application.

In the previous example, the basic time granule was a season. In the next

example, which lists the daily schedule of trains to Newcastle, time granules

are hours.

Trains for Newcastle leave every two hours, starting at 8:00 am and

ending at 10:00 pm (last train of the day). Here we use midnight as our

initial time, and use hours as our time granules. Then we have the following

daily schedule:

Example 10.8 Trains for Newcastle leave daily at 800 hours and

then every two hours until 2200 hours (military

time)

before22(22):

before22(H) before22(H+ 1):

leaves(8; newcastle):

leaves(T+ 2; newcastle) leaves(T; newcastle);

before22(T):

Thus the query ?leaves(When; newcastle) will generate the daily depar-

ture schedule for Newcastle.

This example also illustrates how Datalog1S models the notion of before

10 pm (2200 hours in military time), and after 8 am.
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Datalog1S is standard Datalog, to which a particular temporal interpreta-

tion is attached. In fact, we have already encountered Datalog1S programs.

For instance, the programs in Examples 10.4 and 10.5 are Datalog1S pro-

grams where s(J) is used instead of J + 1 to model the notion of successor

(actually the name Datalog1S originated from this alternate notation). Also

the programs in Example 9.15 are Datalog1S, since the pairs J � 1 and J in

the counting rules can be replaced by I and I + 1 without changing their

meaning.

Remarkably, Datalog1S represents as powerful a language for temporal

reasoning as special-purpose temporal languages with modal operators. Take

for instance Propositional Linear Temporal Logic (PLTL).

PLTL is based on the notion that there is a succession of states H =

(S0; S1; : : :), called a history. Then, modal operators are used to de�ne in

which states a predicate p holds true.

For instance, the previous example of trains to Newcastle can be mod-

eled by a predicate newcstl that holds true in the following states: S8; S10;

S12; S14; S16; S18; S20; S22, and it is false everywhere else.

Then temporal predicates that hold in H are de�ned as follows:

1. Atoms: Let p be an atomic propositional predicate. Then p is said to

hold in history H when p holds in H's initial state S0.

In addition to the usual propositional operators _;^, and :, PLTL o�ers

the following operators:

2. Next: Next p, denotedp, is true in historyH, when p holds in history

H1 = (S1; S2; : : :).

Therefore,n
p, n � 0, denotes that p is true in history (Sn; Sn+1; : : :).

3. Eventually: Eventually q, denoted Fq, holds when, for some n, n
q.

4. Until: p until q, denoted p U q, holds if, for some n,n
q, and for every

state k < n, k
p.

Other important operators can be derived from these. For instance, the

fact that q will never be true can simply be de�ned as :Fq; the fact that q

is always true is simply described as :F(:q)); the notation Gq is often used

to denote that q is always true.

The operator p before q, denoted pBq can be de�ned as :((:p) U q)|

that is, it is not true that p is false until q.

PLTL �nds many applications, including temporal queries and proving

properties of dynamic systems. For instance, the question \Is there a train
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to Newcastle that is followed by another one hour later?" can be expressed

by the following query:

?F(newcstl ^newcstl)

Every query expressed in PLTL can also be expressed in propositional

Datalog1S (i.e., Datalog with only the temporal argument). For instance,

the previous query can be turned into the query ?pair to newcstl where

pair to newcstl newcstl(J)^ newcstl(J+ 1):

Therefore, the interpretation \for some J" assigned to the temporal ar-

gument J of a Datalog1S predicate is su�cient to model the operator F of

PLTL, while  is now emulated by +1.

The translation of the other operators, however, is more complex. Say,

for instance, that we want to model p U q. By the de�nition, p must be true

at each instant in history, until the �rst state in which q is true.

Example 10.9 p U q in Datalog1S

post q(J+ 1) q(J):

post q(J+ 1) post q(J):

first q(J) q(J);:post q(J):

pre first q(J) first q(J+ 1):

pre first q(J) pre first q(J+ 1):

fail p Until q pre first q(J);:p(J):

p Until q pre q(0); :fail p Until q:

Therefore, we used recursion to reason back in time and identify all states

in history that precede the �rst occurrence of q. Then, p U q was de�ned

using double negation, yielding a program with strati�ed negation (although

this is not necessary; see Exercise 10.8). A similar approach can be used to

express other operators of temporal logic. For instance, p B q can be de�ned

using the predicates in Example 10.9 and the rule

p Before q p(J); pre first q(J):

10.4 XY-Strati�cation

The main practical limitation of semantics based on concepts such as well-

founded models is that there is no simple way to decide whether a program
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obeys such a semantics, short of executing the program. This is in sharp

contrast with the concept of strati�ed negation, where a predicate depen-

dency graph free of cycles provides a simple criterion for the programmer to

follow in writing the program, and for the compiler to check and use in vali-

dating and optimizing the execution of the program. We will next discuss a

particular mixture of Datalog1S and strati�cation that has great expressive

power but preserves much of the simplicity of strati�ed programs.

For instance, the ancestors of marc, and the number of generations that

separates them from marc, can be computed using the following program,

which also includes the di�erential �xpoint improvement:

Example 10.10 Ancestors of marc and the generation gap includ-

ing the di�erential �xpoint improvement

r1 : delta anc(0; marc):

r2 : delta anc(J+ 1; Y) delta anc(J; X); parent(Y; X);

:all anc(J; Y):

r3 : all anc(J+ 1; X) all anc(J; X):

r4 : all anc(J; X) delta anc(J; X):

This program is locally strati�ed by the �rst argument in anc that serves

as temporal argument. The zeroth stratum consists of atoms of nonrecursive

predicates such as parent and of atoms that unify with all anc(0; X) or

delta anc(0; X), where X can be any constant in the universe. The k
th

stratum consists of atoms of the form all anc(k; X); delta anc(k; X). Thus,

this program is locally strati�ed, since the heads of recursive rules belong

to strata that are one above those of their goals. Also observe that the pro-

gram of Example 10.4 has this property, while the program of Example 10.5

does not.

So far, we have studied the case where all recursive atoms with the same

temporal argument belong to the same stratum. This structure can be gen-

eralized by partitioning atoms with the same temporal argument into mul-

tiple substrata. For instance, in Example 10.10, a strict strati�cation would

place delta anc(k; X) in a stratum lower than all anc(k; X). In fact, if the

goal :delta anc(J + 1; X) is added to the third rule (this will not change

the meaning of the program), having the former atoms in a lower stratum

becomes necessary to preserve local strati�cation.

From these examples, therefore, we can now describe the syntactic struc-

ture of our programs as follows:
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De�nition 10.13 XY-programs. Let P be a set of rules de�ning mutually

recursive predicates. Then we say that P is an XY-program if it satis�es the

following conditions:

1. Every recursive predicate of P has a distinguished temporal argument.

2. Every recursive rule r is either an X-rule or a Y-rule, where

� r is an X-rule when the temporal argument in every recursive

predicate in r is the same variable (e.g., J),
� r is a Y-rule when (i) the head of r has as temporal argument

J + 1, where J denotes any variable, (ii) some goal of r has as

temporal argument J , and (iii) the remaining recursive goals have

either J or J + 1 as their temporal arguments.

For instance, the program in Example 10.10 is an XY-program where r4
is an X-rule while r2 and r3 are Y-rules.

Therefore, exit rules establish initial values for the temporal argument;

then the X-rules are used for reasoning within the same state (i.e., the same

value of temporal argument) while the Y-rules are used for reasoning from

one state to the successor state.

There is a simple test to decide whether an XY-program P is locally

strati�ed. The test begins by labeling the recursive predicates in P to yield

the bi-state program Pbis, computed as follows: For each r 2 P ,

1. Rename all the recursive predicates in r that have the same temporal

argument as the head of r with the distinguished pre�x new .

2. Rename all other occurrences of recursive predicates in r with the

distinguished pre�x old .

3. Drop the temporal arguments from the recursive predicates.

For instance, the bi-state version for the program in Example 10.10 is as

follows:

Example 10.11 The bi-state version of the program in Example

10.10

new delta anc(marc):

new delta anc(Y) old delta anc(X); parent(Y; X);

:old all anc(Y):

new all anc(X) new delta anc(X):

new all anc(X) old all anc(X):
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De�nition 10.14 Let P be an XY-program. P is said to be XY-strati�ed

when Pbis is a strati�ed program.

The program of Example 10.11 is strati�ed with the following strata:

S0 = fparent; old all anc; old delta ancg, S1 = fnew delta ancg, and

S2 = fnew all ancg. Thus, the program in Example 10.10 is locally strati-

�ed.

Theorem 10.15 Let P be an XY-strati�ed program. Then P is locally strat-

i�ed.

Proof. Let � be a strati�cation of Pbis in n + 1 strata numbered from 0

to n, where we can assume, without loss of generality, that if p is a recursive

predicate, then old p along with every nonrecursive predicate belongs to

stratum 0. Then, a local strati�cation for P can be constructed by assigning

every recursive atom with predicate name, say, q, to the stratum j � n+ k,

where k is the stratum of � to which new q belongs and j is the temporal

argument in q. Nonrecursive predicates are assigned to stratum 0. Then, by

construction, the head of every rule r 2 ground(P ) belongs to a stratum that

is higher than the strata containing positive goals of r and strictly higher

than the strata containing negated goals of r. 2

Thus, the program of Example 10.10 is locally strati�ed with strata

S0 = fparentg

S1 = fdelta anc(0; : : :)g

S2 = fall anc(0; : : :)g

S3 = fdelta anc(1; : : :)g

S4 = fall anc(1; : : :)g

: : :

Sj�2+1 = fdelta anc(j; : : :)g

Sj�2+2 = fall anc(j; : : :)g

For an XY-strati�ed program P , the iterated �xpoint of Algorithm 9.2

becomes quite simple; basically it reduces to a repeated computation over the

strati�ed program Pbis. However, since the temporal arguments have been

removed from this program, we need to (1) store the temporal argument as

an external fact counter(T), and (2) add a new goal counter(I
r
) to each

exit rule r in Pbis, where Ir is the temporal argument in the original rule r.

The program so constructed will be called the synchronized version of Pbis.
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For instance, to obtain the synchronized version of the program in Example

10.11, we need to change the �rst rule to

new delta anc(marc) counter(0):

since the temporal argument in the original exit rule was the constant 0.

Then, the iterated �xpoint computation for an XY-strati�ed program

can be implemented by the following procedure:

Procedure 10.16 Computing the well-founded model of an XY-strati�ed

program P

Inititialize: Set T = 0 and insert the fact counter(T).

Forever repeat the following two steps:

1. Apply the iterated �xpoint computation to the synchronized

program Pbis, and for each recursive predicate q, compute

new q. Return the new q atoms so computed, after adding a

temporal argument T to these atoms; the value of T is taken

from counter(T).

2. For each recursive predicate q, replace old q with new q,

computed in the previous step. Then, replace counter(T)

with counter(T+ 1).

Thus, for Example 10.10, the goal counter(0) ensures that the exit rule

only �res once immediately after the initialization step. However, we might

have exit rules where the temporal argument is a constant greater than zero,

or even is not a constant, and then the exit rules might produce results at

later steps, too.

For the program in Example 10.4, Procedure 10.16 cannot terminate

since it must compute all integers. However, for practical applications we

need to have simple su�cient conditions that allow us to stop the compu-

tation. An e�ective condition can be formulated as follows: For each rule,

there is at least one positive goal that cannot be satis�ed for any value of its

variables. Then, the following two conditions need to be checked: (i) the exit

rules cannot produce any new values for values of T greater than the current

one, and (ii) for each recursive rule, there is a positive goal, say, q, for which

no new q atoms were obtained at the last step. For Example 10.10, condition

(i) is satis�ed since the temporal argument is a constant; however, the third

rule forever fails condition (ii), causing an in�nite computation. Thus, the
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programmer should add the goal delta anc(J; ) to this rule. Once no new

arcs are found, then because of the negated goal in the second rule, there is

no new delta anc(J; ) atom and the computation stops.

The computation of Procedure 10.16 can be made very e�cient by some

simple improvements. The �rst improvement consists in observing that the

replacement of old q with new q described in the last step of the procedure

can become a zero-cost operation if properly implemented (e.g., by switching

the reference pointers to the two relations). A second improvement concerns

copy rules such as the last rule in Example 10.10. Observe that the body and

the head of this rule are identical, except for the pre�xes new or old, in its

bi-state version (Example 10.11). Thus, in order to compute new all anc,

we �rst execute the copy rule by simply setting the pointer to new all anc

to point to old all anc|a zero-cost operation. The third rule is executed

after that, since it can add tuples to new all anc.

In the next example, we use XY-strati�ed programs to compute temporal

projections. Say, for instance, that we have a temporal relation as follows:

emp dep sal (Eno, Dept, Sal, From, To). Now, say that

emp dep sal(1001; shoe; 35000; 19920101; 19940101):

emp dep sal(1001; shoe; 36500; 19940101; 19960101):

represent two tuples from this relation. The �rst fact denotes that employee

with Eno = 1001 has kept the same salary ($35,000) and department (shoe)

from 1992=01=01 (year/month/day) till 1994/01/01.4According to the sec-

ond fact, this employee, still in the shoe department, then received a salary

of $36,500 from 1994=01=01 till 1996=01=01. If we now project out the

salary and department information, these two intervals must be merged to-

gether. In this example, we have intervals overlapping over their endpoints.

In more general situations, where a temporal projection eliminates some key

attributes, we might have intervals overlapping each other over several time

granules.

Thus, we use the program of Example 10.12, which iterates over two

basic computation steps. The �rst step is de�ned by the overlap rule. This

determines pairs of distinct overlapping intervals, where the �rst interval

precedes (i.e., contains the start) of the second interval. The second step

consists of deriving a new interval that begins at the start of the �rst interval,

and ends at the later of the two endpoints. Finally, there is a copy rule that

copies those intervals that do not overlap other intervals.

4In a Datalog system that supports the temporal data types discussed in Part II, those

should be used instead of this crude representation.
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This example uses the auxiliary predicates distinct and select larger.

The �rst veri�es that two intervals are not the same interval. The sec-

ond selects the larger of a pair of values. The program P of Example

10.12 is XY-strati�ed since the nodes of Pbis can be sorted into the fol-

lowing strata �0 = fdistinct; select larger; old overlap; old e histg,

�1 = fnew overlapg, �2 = fnew e histg.

Example 10.12 Merging overlapping periods into maximal peri-

ods after a temporal projection

e hist(0; Eno; Frm; To) emp dep sal(0; Eno; D; S; Frm; To):

overlap(J+ 1; Eno; Frm1; To1; Frm2; To2) 

e hist(J; Eno; Frm1; To1);

e hist(J; Eno; Frm2; To2);

Frm1 � Frm2; Frm2 � To1;

distinct(Frm1; To1; Frm2; To2):

e hist(J; Eno; Frm1; To) overlap(J; Eno; Frm1; To1; Frm2; To2);

select larger(To1; To2; To):

e hist(J+ 1; Eno; Frm; To) e hist(J; Eno; Frm; To);

overlap(J+ 1; ; ; ; ; );

:overlap(J+ 1; Eno; Frm; To; ; );

:overlap(J+ 1; Eno; ; ; Frm; To):

final e hist(Eno; Frm; To) e hist(J; Eno; Frm; To);

:e hist(J+ 1; ; ; ):

distinct(Frm1; To1; Frm2; To2) To1 6= To2:

distinct(Frm1; To1; Frm2; To2) Frm1 6= Frm2:

select larger(X; Y; X) X � Y:

select larger(X; Y; Y) Y > X:

Thus, in the corresponding local strati�cation, the atoms distinct and

the atoms select larger go to the bottom stratum S0. Then the atoms

in �1 are in strata Sj�2+1, while those in �2 are now in strata Sj�2+2 (j

denotes the temporal argument of these atoms).

The second e hist rule in Example 10.12 is a quali�ed copy rule; that

is, the head is copied from the body provided that certain conditions are

satis�ed. This can be implemented by letting new e hist and old e hist
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share the same table, and use deletion-in-place for those tuples that do not

satisfy the two negated goals. The goal overlap(J; ; ; ; ) ensures that the

computation stops as soon as no more overlapping intervals are found.

As demonstrated by these examples, XY-strati�ed programs allow an

e�cient logic-based expression of procedural algorithms.

10.5 Updates and Active Rules

In general, logic-based systems have not dealt well with database updates.

For instance, Prolog resorts to its operational semantics to give meaning to

assert and retract operations. Similar problems are faced by deductive

database systems, which, however, concentrate on changes in the base rela-

tions, rather than facts and rules as in Prolog. Active database rules contain

updates in both their bodies and their heads. Much current research work

pursues the objective of providing a uni�ed treatment for active rules, deal-

ing with updates, and deductive rules, dealing with queries. The two are

now viewed as separate areas of database technology, although they often

use similar techniques and concepts (see, for instance, the uses of strati�ca-

tion in Section 4.2). This section outlines a simple solution to these problems

using Datalog1S and XY-strati�cation.

The approach here proposed is driven by the threefold requirement of

(1) providing a logical model for updates, (2) supporting the same queries

that current deductive databases do, and (3) supporting the same rules that

active databases currently do.

The �rst requirement can be satis�ed by using history relations as exten-

sional data. Thus, for each base relation R in the schema, there is a history

relation, which keeps the history of all changes (updates) on R. For our

university database, instead of having a student relation with facts of the

following form:

student('Jim Black'; cs; junior):

we have a student hist relation containing the history of changes undergone

by Jim Black's record. Example 10.13 shows a possible history.

Example 10.13 The history of changes for Jim Black

student hist(2301,+, 'Jim Black', ee, freshman).

student hist(4007,-, 'Jim Black', ee, freshman).

student hist(4007,+, 'Jim Black', ee, sophomore).
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student hist(4805,-, 'Jim Black', ee, sophomore).

student hist(4805,+, 'Jim Black', cs, sophomore).

student hist(6300,-, 'Jim Black', cs, sophomore).

student hist(6300,+, 'Jim Black', cs, junior).

Thus, 'Jim Black' joined as a freshman in ee. The �rst column, 2301, is

a change counter that is global for the system|that is, it is incremented for

each change request. In fact, several changes can be made in the same SQL

update statement: for instance, it might be that all the ee freshmen have

been updated to sophomore in the same request. Thus, one year later, as

Jim moves from freshman to sophomore, the change counter has been set to

4007. Therefore, there has been a total of 4; 007 � 2; 301 database changes

during the course of that year. Thus, we represent here deletions by the \�"

sign in the second column and inserts by the \+" sign in the same column.

An update is thus represented by a delete/insert pair having the same value

in the temporal argument. Di�erent representations for updates and other

database events (e.g., representing the update directly, and timestamping

the tuples) could also be handled in this modeling approach.

The remaining history of Jim Black's records states that he became a

sophomore, and then he changed his major from ee to cs. Finally Jim

became a junior|and that represents the current situation.

For a history database to be correct, it must satisfy a continuity axiom,

which basically states that there is no jump in the change counters. This can

be expressed through a predicate that registers when there is some change

in some database relation. For instance, say that our university database,

in addition to the tables

student(Name; Major; Year); took(Name; Course; Grade)

discussed in Chapter 8, also contains the relation

alumni(Name; Sex; Degree; ClassOf)

which obviously records the alumni who graduated from college in the pre-

vious years. Then we will need three rules to keep track of all changes:

change(J) student hist(J; ; ; ; ):

change(J) took hist(J; ; ; ; ):

change(J) alumni hist(J; ; ; ; ; ):
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Thus, there is a rule for each history relation. A violation to the conti-

nuity axiom can be expressed as follows:

bad history change(J+ 1);:change(J):

Let us turn now to the second requirement: the support of deductive

queries against the current database. This is achieved through snapshot

predicates, derived from the history relations using frame axioms.

For the student relation, for instance, we have the following rules:

Example 10.14 Snapshot predicates for student via frame axioms

student snap(J+ 1; Name; Major; Level) 

student snap(J; Name; Major; Level);

:student hist(J+ 1;�; Name; Major; Level):

student snap(J; Name; Major; Level) 

student hist(J;+; Name; Major; Level):

These rules express what are commonly known as frame axioms. Basically,

the content of a database relation after some change is the same as that in

the previous state, minus the deleted tuples, and plus the inserted tuples.

Observe that the recursive student snap rules so obtained are XY-strati�ed.

Furthermore, observe the �rst rule in Example 10.14, which computes the

e�ects of deletions. This is a copy rule and, therefore, it will be implemented

by removing the tuples satisfying the negated goal (i.e., the deleted tuples)

and leaving the rest of the relation unchanged. Similar frame axiom rules

will be de�ned for each relation in the schema.

Deductive queries are then answered against the current content of the

database (i.e., the �nal value of the change counter).

Example 10.15 The current content of the relation student

current state(J) change(J);:change(J+ 1):

student(Name; Major; Year) student snap(J; Name; Major; Year);

current state(J):

Because of the continuity axiom, change(J);:change(J+ 1) de�nes the

current state J. Similar rules will be written for the remaining relations in

the database. The predicates so derived are then used in deductive rules

described in the previous chapters.
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We can now turn to the problem of modeling active rules. Here we

limit our discussion to Event-Condition-Action rules, under the immediate-

after activation semantics, that were discussed in Chapter 2. These can

be modeled naturally in this framework, since conditions can be expressed

against the snapshot relations, while events and actions can be expressed

against history relations. For instance, say that we have the following active

rules:

A1 : If a student is added to the alumni relation, then delete his name from

the student relation, provided that this is a senior-level student.

A2 : If a person takes a course, and the name of this person is not in the

student relation, then add that name to the student relation, using the

(null) value tba for Major and Level.

Under the \immediately after" activation semantics, discussed in Section

2.2, these rules can be modeled as follows:

Example 10.16 Active rules on histories and snapshots

A1 : student hist(J+ 1;�; Name; Major; senior) 

alumni hist(J;+; Name; ; ; );

student snap(J; Name; Major; senior):

A2 : student hist(J+ 1;+; Name; tba; tba) 

took hist(J;+; Name; ; );

:student snap(J; Name; ; ):

Let A be an active program, that is, the logic program consisting of (1)

the history relations, (2) the change predicates, (3) the snapshot predicates,

and (4) the active rules. Because of its XY-strati�ed structure, this program

has a unique stable model M , which de�nes the meaning of the program.

Now assume that a new tuple is added to the history relation. Active

rules might trigger changes and then tuples are added to the history relations

until no more rules can �re. However, only the external changes requested

by a user, and those triggered by active rules, can be in the history relations.

Therefore, an active database A must satisfy the following two axioms:

1. Completeness Axiom. The history relations in A must be identical to

the history relations in the stable model of A.
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2. External Causation Axiom. Let Aext be the logic program obtained

from A by eliminating from the history relations all changes but the

external changes requested by users. Then, the stable model of Aext

and the stable model of the original A must be identical.

Thus, while predicates de�ned by deductive rules behave as virtual views,

the history relations behave as concrete views. Whenever a new change is

requested by users, all changes implied by the active rules are also added to

the history relations. The complete set of new entries added to the history

relations de�ne the response of the system to the changes requested by the

user.

10.6 Nondeterministic Reasoning

Say that, with relation student(Name; Major; Year), our university database

contains the relation professor(Name; Major). In fact, say that our toy

database contains only the following facts:

student('Jim Black'; ee; senior): professor(ohm; ee):

professor(bell; ee):

Now, the rule is that the major of a student must match his/her advisor's

major area of specialization. Then eligible advisors can be computed as

follows:

elig adv(S; P) student(S; Major; Year); professor(P; Major):

This yields

elig adv('Jim Black'; ohm):

elig adv('Jim Black'; bell):

But, since a student can only have one advisor, the goal choice((S); (P))

must be added to force the selection of a unique advisor, out of the eligible

advisors, for a student.

Example 10.17 Computation of unique advisors by choice rules

actual adv(S; P) student(S; Major; Levl); professor(P; Major);

choice((S); (P)):
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The goal choice((S); (P)) can also be viewed as enforcing a functional de-

pendency (FD) S ! P; thus, in actual adv, the second column (professor

name) is functionally dependent on the �rst one (student name).

The result of executing this rule is nondeterministic. It can either give a

singleton relation containing the tuple ('Jim Black'; ohm) or that containing

the tuple ('Jim Black'; bell).

A program where the rules contain choice goals is called a choice program.

The semantics of a choice program P can be de�ned by transforming P into a

program with negation, SV (P ), called the stable version of a choice program

P . SV (P ) exhibits a multiplicity of stable models, each obeying the FDs

de�ned by the choice goals. Each stable model for SV (P ) corresponds to an

alternative set of answers for P and is called a choice model for P . SV (P )

is de�ned as follows:

De�nition 10.17 The stable version SV (P ) of a choice program P is ob-

tained by the following transformation. Consider a choice rule r in P :

r : A B(Z); choice((X1); (Y1)); : : : ; choice((Xk); (Yk)):

where,

(i) B(Z) denotes the conjunction of all the choice goals of r that are not

choice goals, and

(ii) Xi; Yi; Z, 1 � i � k, denote vectors of variables occurring in the body

of r such that Xi \ Yi = ; and Xi; Yi � Z.

Then the original program P is transformed as follows:

1. Replace r with a rule r
0 obtained by substituting the choice goals with

the atom chosenr(W ):

r
0 : A B(Z); chosenr(W ):

where W � Z is the list of all variables appearing in choice goals, i.e.,

W =
S
1�j�kXj [ Yj.

2. Add the new rule

chosenr(W ) B(Z); :diffChoicer(W ):

3. For each choice atom choice((Xi); (Yi)) (1 � i � k), add the new rule

diffChoicer(W ) chosenr(W
0); Yi 6= Y

0
i
:
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where (i) the list of variables W 0 is derived from W by replacing each

A 2 Yi with a new variable A0 2 Y 0
i
(i.e., by priming those variables),

and (ii) Yi 6= Y
0
i
is true if A 6= A

0, for some variable A 2 Yi and its

primed counterpart A0 2 Y 0
i
.

The stable version of Example 10.17 is given in Example 10.18, which

can be read as a statement that a professor will be assigned to each stu-

dent if a di�erent professor has not been assigned to the same student.

Example 10.18 The stable version of the rule in Example 10.17

actual adv(S; P) student(S; Majr; Yr); professor(P; Majr);

chosen(S; P):

chosen(S; P) student(S; Majr; Yr); professor(P; Majr);

:diffChoice(S; P):

diffChoice(S; P) chosen(S; P0); P 6= P
0
:

In general, the program SV (P ) generated by the transformation dis-

cussed above has the following properties:

� SV (P ) has one or more total stable models.

� The chosen atoms in each stable model of SV (P ) obey the FDs de�ned

by the choice goals.

The stable models of SV (P ) are called choice models for P .

Strati�ed Datalog programs with choice are in DB-PTIME: actually they

can be implemented e�ciently by producing chosen atoms one at a time and

memorizing them in a table. The diffchoice atoms need not be computed

and stored; rather, the goal :diffchoice can simply be checked dynamically

against the table chosen.

The use of choice is critical in many applications. For instance, the

following nonrecursive rules can be used to determine whether there are

more boys than girls in a database containing the unary relations boy and

girl:

Example 10.19 Are there more boys than girls in our database?

match(Bname; Gname) boy(Bname); girl(Gname):

choice((Bname); (Gname));

choice((Gname); (Bname)):

matched boy(Bname) match(Bname; Gname):

moreboys boy(Bname); :matched boy(Bname):
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The most signi�cant applications of choice involve the use of choice in

recursive predicates. For instance, the following program computes the span-

ning tree, starting from the source node a, for a graph where an arc from

node b to d is represented by the database fact g(b; d).

Example 10.20 Computing a spanning tree

st(root; a):

st(X; Y) st( ; X); g(X; Y); Y 6= a; choice((Y); (X)):

In this example, the goal Y 6= a ensures that, in st, the end-node for

the arc produced by the exit rule has an in-degree of one; likewise, the goal

choice((Y); (X)) ensures that the end-nodes for the arcs generated by the

recursive rule have an in-degree of one.

Strati�ed Datalog programs with choice are also DB-PTIME complete,

without having to assume that the universe is totally ordered. Indeed, the

following program de�nes a total order for the elements of a set d(X) by

constructing an immediate-successor relation for its elements (root is a dis-

tinguished new symbol):

Example 10.21 Ordering a domain

ordered d(root; root):

ordered d(X; Y) ordered d( ; X); d(Y);

choice((X); (Y)); choice((Y); (X)):

The choice goals in Example 10.21 ensure that once an arc (X; Y) is gener-

ated, this is the only arc leaving the source node X and the only arc entering

the sink node Y.

Set aggregates on the elements of the set d(X), including the parity query,

are easily computed using the relation ordered d. Alternatively, these aggre-

gates can be computed directly using a program similar to that of Example

10.21. For instance, the sum of all elements in d(X) can be computed as

follows:

Example 10.22 The sum of the elements in d(X)

sum d(root; root; 0) d( ):

sum d(X; Y; SY) sum d( ; X; SX); d(Y);

choice((X); (Y)); choice((Y); (X)); SY = SX+ Y:

total d(Sum) sum d( ; X; Sum); :sum d(X; ; ):
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If we eliminate the choice goal from the program P of Example 10.22,

we obtain a program P
0 that is strati�ed with respect to negation. There-

fore, the original P is called a strati�ed choice program. Strati�ed choice

programs always have stable models. Moreover, these stable models can be

computed by an iterated �xpoint computation that computes choice models

for strata where rules have choice goals. For instance, in Example 10.22,

the choice model of the sum d stratum is computed �rst, and the next stra-

tum containing total d is computed after that. Likewise, choice goals can

be added to XY-strati�ed programs, yielding programs that have multiple

stable models. These models can be computed by Procedure 10.16, which is

now iterating over strati�ed choice programs.

The choice construct is signi�cant for both nondeterministic and deter-

ministic queries. A nondeterministic query is one where any answer out of a

set is acceptable. This is, for instance, the case of Example 10.17, where an

advisor has to be assigned to a student. Example 10.22 illustrates the use

of choice to compute a deterministic query; in fact, the sum of the elements

of the set is independent from the order in which these are visited.

Since strati�ed Datalog on an ordered domain is DB-PTIME complete,

Example 10.21 ensures that strati�ed choice programs are also DB-PTIME

complete for deterministic queries. Furthermore, the use of choice, unlike

the assumption of an underlying ordered domain, also ensures the genericity

of queries. Basically, a query is said to be generic if it is independent of

permutations of the order of constants in the database.

When choice is used in the computation of strati�ed or XY-strati�ed

programs, no previously made choice needs to be repudiated later, since

the iterated �xpoint always generates a stable model. This produces \don't

care" nondeterminism, generating polynomial-time computations.

In the more general case, however, �nding a stable model for a program

requires the use of intelligent (oracle-type) nondeterminism; in practice, this

can only be realized by an exponential search. For instance, the following

program determines if there exists a Hamiltonian path in a graph. A graph

has a Hamiltonian path i� there is a simple path that visits all nodes exactly

once.

Example 10.23 Hamiltonian path in a directed graph g(X; Y)

simplepath(root; root):

simplepath(X; Y) simple path( ; X); g(X; Y);

choice((X); (Y)); choice((Y); (X)):

nonhppath n(X); : simplepath( ; X):

q  :q; nonhppath:
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LetM be a model for this program. If nonhppath is true inM , then rule q 

:q must also be satis�ed by M . Thus, M cannot be a stable model. Thus,

this program has a stable model i� there exists a Hamiltonian path. Thus,

searching for a stable model of this program might require all alternative

choices to be explored for each possible node (e.g., using backtracking). This

generates an exponential computation. In fact, since the Hamiltonian path

problem is known to be NP-complete, the stable version of Example 10.23

provides a simple proof that deciding whether a stable model exists for a

program is NP-hard.

10.7 Research Directions

The main focus of current research is breaking through the many barriers

that have limited the application of logic-oriented databases in various do-

mains. Developing a logic-based theory of database changes and events and

supporting the integration of active and deductive databases represent two

important objectives in this e�ort. In contrast with the simple approach

described in this chapter, many of the approaches proposed in the past have

been very sophisticated and complex. A major line of AI research uses sit-

uation calculus, where function symbols are used to represent changes and

histories. In addition to modeling database updates, this approach has been

used for integrity constraints, AI planning, reasoning with hypothetical up-

dates, and other di�cult problems. A logic-based framework for modeling

changes and frame axioms in situation calculus can follow an open-world

approach with explicit-negation, or take the implicit-negation approach, of-

ten in conjunction with stable model semantics. The transaction logic ap-

proach developed by Bonner and Kifer recasts some of this power and com-

plexity into a path-based formalism (Datalog1S is state-oriented) attuned to

database transactions.

Support for temporal and spatial reasoning in databases represents a

promising area of current research, and so is the topic of reasoning with

uncertainty, discussed in Part V. These lines of research often tackle issues

of partial order, since nonmonotonic programs written to reason with time

or uncertainty, for example, can become monotonic once the appropriate

lattice-based representation is found. A closely related research line investi-

gates the problem of monotonic aggregation in databases.

In the previous chapter we discussed some of the technical challenges

facing the design of deductive database systems and of recursive extensions

for SQL3. It is reasonable to expect that the next generation of system

prototypes will resolve those problems and move toward the integration of
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the active, deductive, and temporal capabilities previously outlined. Fur-

thermore, object-oriented features will be included in these systems. The

integration of deductive and object-oriented databases has been a topic of

active research and will remain so for the near future.

In the end, future developments in the �eld will be driven more by appli-

cations than by technological advances. In particular, the uses of deductive

systems to realize distributed mediators and to perform knowledge discovery

from databases are emerging as very promising application domains for the

technology.
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[107]. Di�erent kinds of temporal logic, including PLTL, are surveyed in [357]

and [142]. Temporal applications of Datalog1S and its underlying theory were

elucidated by Chomicki [106, 46].

The notion of XY-strati�cation is due to Zaniolo, Arni, and Ong [469].

The related concept of explicitly locally strati�ed programs was investigated

in [241]. The use of XY-strati�ed programs to model updates and active rules

was explored in [466, 467]. Brogi, Subrahmanian, and Zaniolo extended XY-
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strati�cation with the choice construct to model various planning problems

[80]. The logic of actions has been the focus of a large body of research; the

use of situation calculus and classical logic was explored by Reiter [339, 354].

Among the many approaches using implicit negation, we will only mention

[33, 187, 34].

Transaction logic is described in [68]. F-logic represents a leading pro-

posal in the area of deductive and object-oriented databases [243]. An in-

troduction to the problem of monotonic aggregation can be found in [365].

The concept of choice, �rst proposed by Krishnamurthy and Naqvi [257],

was then revised by Sacc�a and Zaniolo [375] using the stable-model seman-

tics; the concept of dynamic choice was introduced by Giannotti, Pedreschi,

Sacc�a and Zaniolo in [189], and its expressive power was studied in [123].

Other nondeterministic extensions to Datalog languages were investigated

by Abiteboul and Vianu [4].

10.9 Exercises

10.1. Let P be a Datalog program. Show that �
"!

P
can be computed in time

that is polynomial in the size of P 's Herbrand base.

10.2. Use Example 10.23 and the results from Exercise 10.1 to show that

deciding whether stable models exist for a given program is NP-

complete.

10.3. Consider the program

c a;:c:

a :b:

b a;:c:

For this program, write all models, minimal models, �xpoints, minimal

�xpoints, and stable models, if any. Also give T
"!

P
.

10.4. Prove that every stable model is a minimal model.

10.5. Prove that every stable model for P is a minimal �xpoint for TP .

10.6. Prove that the program in Example 10.5 is not locally strati�ed.

10.7. Explain how the alternating �xpoint computes the stable model for a

strati�ed program. Perform the computation on Example 8.7.

10.8. The until ( U ) operator of PLTL is monotonic; give a positive program

that expresses this operator.
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10.9. Write an XY-strati�ed program for the BoM Example 8.19, where the

computation of longest time required for all subparts of a given part

is performed in the recursive rules. What are the local strata for the

resulting program?

10.10. Given a directed graph g(a; b; d), where a and b are nodes, and d is

their distance, determine

a. the least distances of a given node to all other nodes of

the graph, and

b. the distances between all node pairs.

Express various algorithms for computing such distances by XY-strati�ed

programs.

10.11. For the active program A described in Section 10.5, derive Abis and its

synchronized version. Explain why the program is XY-strati�ed and

how the actual computation will take place.

10.12. Given the relation club member(Name; Sex), write a nonrecursive Da-

talog program to determine whether there is exactly the same number

of males and females in the club. Use choice but not function symbols.

10.13. Use choice to write a recursive program that takes a set of database

predicates b(X) and produces a relation sb(X; I), with I a unique se-

quence number attached to each X.

10.14. Express the parity query using choice (do not assume a total order of

the universe).

10.15. Write a program with choice and strati�ed negation that performs the

depth-�rst traversal of a directed graph.
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