
Data Integration: Query Evaluation

Jan Chomicki

University at Buffalo



Interpreting schema mappings

Semantics

• M: function mapping source instances to sets of target instances:

M : I (S) 7→ 2I (T )

where S is a source schema and T is a target schema

• specified using assertions (source-to-target dependencies) or queries

• completeness assumptions: OWA vs. CWA

• special classes: GAV, LAV, GLAV

Certain answers
A tuple t is a certain answer to a query Q over the source instance s ∈ I (S)
with respect to M if t ∈ Q(w) for every target instance w ∈ M(s).

CWA vs. OWA

• Closed World Assumption (CWA): complete knowledge

• Open World Assumption (OWA): incomplete knowledge



Global-as-view (GAV)

Setting

• source-to-target dependencies:
• under OWA: ∀t. φS (t)⇒ R(t)
• under CWA: ∀t. φS (t)⇔ R(t)
• φS (t): disjunction of conjunctions of source atoms

• queries: unions of conjunctive queries (defined using Datalog)

Query evaluation by unfolding

1 preprocessing: each atom in the query is replaced by one with fresh
variables and additional conditions added

2 applicability: can the head A of a rule r can be made identical to a query
atom B by a renaming substitution θ of all variables?

3 unfolding: replace B by the body of a rule r to which θ has been applied

4 termination: stop when only source atoms are left

5 result: take the union Qu of all obtained queries

6 correctness: the evaluation of Qu over the source instances returns the
certain answers (under both OWA and CWA)



Unfolding example

Setting

• Databases:
• Source: emp(N,A), num(N,Id)
• Target: name(Id,N), addr(Id,A)

• Source-to-target dependency (GAV):

∀N,A, Id . emp(N,A) ∧ num(N,Id)⇒ name(Id,N)

1 Query:

query(N) :- emp101(N).

emp101(N) :- name(101,N).

2 Preprocessing and renaming of the query atoms:

query(N) :- emp101(N).

emp101(N1) :- name(X,N1), X=101.

3 Unfolding the first query rule with the second:

query(N) :- name(X,N), X=101.

4 Renaming of the source-to-target dependency:

name(Id2,N2) :- emp(N2,A2), num(N2,Id2).

5 Unfolding with the source-to-target dependency:

query(N) :- emp(N,A2), num(N,X), X=101.



Local-as-view (LAV)

Setting

• Source-to-target dependencies (OWA):

∀t. R(t)⇒ φT (t)

• φT (t): conjunctive query over the target

• queries: sets of Datalog rules (no inequalities).

Query rewriting

• the rewriting produces a set of Datalog rules with Skolem function
symbols:

• EDB predicates: source relations
• IDB predicates: target relations

• function symbols can be eliminated.



Query evaluation in LAV

Inverse rules

• for every source-to-target dependency:

∀x1, . . . , xm.(A⇒ ∃y1, . . . yk .B1 ∧ · · · ∧ Bn)

produce n inverse rules B ′
1 : −A, . . . ,B ′

n : −A
• B ′

i is like Bi , except that each of y1, . . . yk is replaced by the (Skolem)
term f (x1, . . . , xm) where f is a different, unique function symbol.

• all the occurrences of the same variable are replaced by the same term

Query evaluation through rewriting

1 construct the inverse rules

2 the query rule and the inverse rules are evaluated bottom-up

3 the evaluation terminates

4 only the substitutions that do not contain Skolem terms are returned to
the user

5 the result is the set of certain answers



Global-and-Local-as-view (GLAV)

Assertions

• source-to-target (ST) dependencies:

∀t. φS(t)⇒ φT (t)

where φS , φT , and ψT are conjunctive queries

• target integrity constraints Σt

• tuple-generating dependencies (tgds): ∀x (φT(x)⇒ ∃y ψT(x, y))
• equality-generating dependencies: ∀x (φT(x)⇒ x1 = x2).

Query evaluation in data exchange

1 construct any universal solution J0

2 evaluate the query over J0

3 discard answers with nulls

4 the above returns certain answers for unions of conjunctive queries without
inequalities



Solutions and certain answers

Solution
Given a source instance I , a target instance J is

• a solution for I if J satisfies target integrity constraints and (I , J) satisfy
source-to-target dependencies

• a universal solution for I if it is a solution for I and there is a
homomorphism from it to any other solution for I

• solutions can contain labelled nulls

Homomorphism

Mapping between two instances I and I ′ that preserves constants and facts.

There may be multiple solutions...

Certain answers

• query answers obtained in every solution J for I



Building a universal solution

Apply repetitively a variant of the chase to the source instance using target and
source-to-target dependencies.

Chasing a tgd

1 find a substitution h that (1) h makes the LHS true in the constructed
instance, and (2) h cannot be extended to a substitution that makes the
RHS true in that instance

2 apply h to the RHS, mapping the existentially quantified variables to fresh
labelled nulls

3 add the resulting facts to the instance.

Chasing an egd

Find a substitution h such that makes the LHS true and h(x1) 6= h(x2):

• if h(x1) and h(x2) are constants, then FAILURE

• otherwise, identify h(x1) and h(x2) (preferring constants).



Chase at work

Source and target databases

Source: Emp(N,A), Num(N, Id) Target: Name(Id ,N), Addr(Id ,A)

Source-to-target dependencies
∀n, a. Emp(n, a)⇒ ∃id . Name(id , n) ∧ Addr(id , a)

∀n, a, id . Emp(n, a) ∧ Num(n, id)⇒ Name(id , n)

Target constraints

Name : N → Id , Addr : Id → A.

Chase sequence
I0 = {Emp(Li , LA),Num(Li , 111)}
I1 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA)}
I2 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA),Name(111, Li)}
I3 = {Emp(Li , LA),Num(Li , 111),Name(111, Li),Addr(111, LA)}



Chase

Result

• there is a sequence of chase applications that ends in failure: no universal
solution

• otherwise: every finite sequence that cannot be extended yields a universal
solution

Acyclic tgds

• no cycles in the program dependency graph
• nodes: relations
• edges from the relations in the body of a tgd to the one in the head

• prevent the recurrent generation of labelled nulls

• more fine-grained analysis possible

Termination
For acyclic tgds, each chase sequence is of length polynomial in the size of the
input.


