Data Integration: Query Evaluation

Jan Chomicki

University at Buffalo

Interpreting schema mappings

Semantics

• *M*: function mapping source instances to sets of target instances:

$$M: I(S) \mapsto 2^{I(T)}$$

where S is a source schema and T is a target schema

- specified using assertions (source-to-target dependencies) or queries
- completeness assumptions: OWA vs. CWA
- special classes: GAV, LAV, GLAV

Certain answers

A tuple **t** is a certain answer to a query Q over the source instance $s \in I(S)$ with respect to M if $\mathbf{t} \in Q(w)$ for every target instance $w \in M(s)$.

CWA vs. OWA

- Closed World Assumption (CWA): complete knowledge
- Open World Assumption (OWA): incomplete knowledge

Global-as-view (GAV)

Setting

- source-to-target dependencies:
 - under OWA: $\forall \mathbf{t}. \phi_{S}(\mathbf{t}) \Rightarrow R(\mathbf{t})$ under CWA: $\forall \mathbf{t}. \phi_{S}(\mathbf{t}) \Leftrightarrow R(\mathbf{t})$

 - $\phi_S(\mathbf{t})$: disjunction of conjunctions of source atoms
- queries: unions of conjunctive queries (defined using Datalog)

Query evaluation by unfolding

- **1** preprocessing: each atom in the query is replaced by one with fresh variables and additional conditions added
- **2** applicability: can the head A of a rule r can be made identical to a query atom B by a renaming substitution θ of all variables?
- **3** unfolding: replace B by the body of a rule r to which θ has been applied
- 4 termination: stop when only source atoms are left
- **6** result: take the union Q_{μ} of all obtained queries
- **6** correctness: the evaluation of Q_{μ} over the source instances returns the certain answers (under both OWA and CWA)

Unfolding example

Setting

- Databases:
 - Source: emp(N,A), num(N,Id)
 - Target: name(Id,N), addr(Id,A)
- Source-to-target dependency (GAV):

 $\forall \textit{N},\textit{A},\textit{Id}.~\mathsf{emp}(\mathsf{N},\mathsf{A}) \land \mathsf{num}(\mathsf{N},\mathsf{Id}) \Rightarrow \mathsf{name}(\mathsf{Id},\mathsf{N})$

Query:

query(N) :- emp101(N). emp101(N) :- name(101,N).

- Preprocessing and renaming of the query atoms: query(N) :- emp101(N). emp101(N1) :- name(X,N1), X=101.
- Output of the first query rule with the second: query(N) :- name(X,N), X=101.
- Renaming of the source-to-target dependency: name(Id2,N2) :- emp(N2,A2), num(N2,Id2).
- Unfolding with the source-to-target dependency: query(N) :- emp(N,A2), num(N,X), X=101.

Local-as-view (LAV)

Setting

• Source-to-target dependencies (OWA):

 $\forall \mathbf{t}. \ R(\mathbf{t}) \Rightarrow \phi_T(\mathbf{t})$

- $\phi_{T}(\mathbf{t})$: conjunctive query over the target
- queries: sets of Datalog rules (no inequalities).

Query rewriting

- the rewriting produces a set of Datalog rules with Skolem function symbols:
 - EDB predicates: source relations
 - IDB predicates: target relations
- function symbols can be eliminated.

Query evaluation in LAV

Inverse rules

• for every source-to-target dependency:

 $\forall x_1,\ldots,x_m.(A\Rightarrow \exists y_1,\ldots,y_k.B_1\wedge\cdots\wedge B_n)$

produce *n* inverse rules $B'_1 : -A, \ldots, B'_n : -A$

- B'_i is like B_i , except that each of $y_1, \ldots y_k$ is replaced by the (Skolem) term $f(x_1, \ldots, x_m)$ where f is a different, unique function symbol.
- all the occurrences of the same variable are replaced by the same term

Query evaluation through rewriting

- construct the inverse rules
- 2 the query rule and the inverse rules are evaluated bottom-up
- 3 the evaluation terminates
- ② only the substitutions that do not contain Skolem terms are returned to the user
- 5 the result is the set of certain answers

Global-and-Local-as-view (GLAV)

Assertions

• source-to-target (ST) dependencies:

 $\forall \mathbf{t}. \ \phi_{\mathcal{S}}(\mathbf{t}) \Rightarrow \phi_{\mathcal{T}}(\mathbf{t})$

where $\phi_{\mathcal{S}},\,\phi_{\mathcal{T}},\,\text{and}\,\,\psi_{\mathcal{T}}$ are conjunctive queries

- target integrity constraints Σ_t
 - tuple-generating dependencies (tgds): $\forall x \ (\phi_T(x) \Rightarrow \exists y \ \psi_T(x, y))$
 - equality-generating dependencies: $\forall x \ (\phi_T(x) \Rightarrow x_1 = x_2).$

Query evaluation in data exchange

- 1 construct any universal solution J_0
- 2 evaluate the query over J_0
- 3 discard answers with nulls
- the above returns certain answers for unions of conjunctive queries without inequalities

Solutions and certain answers

Solution

Given a source instance I, a target instance J is

- a solution for I if J satisfies target integrity constraints and (I, J) satisfy source-to-target dependencies
- a universal solution for *I* if it is a solution for *I* and there is a homomorphism from it to any other solution for *I*
- solutions can contain labelled nulls

Homomorphism

Mapping between two instances I and I' that preserves constants and facts.

There may be multiple solutions...

Certain answers

• query answers obtained in every solution J for I

Building a universal solution

Apply repetitively a variant of the chase to the source instance using target and source-to-target dependencies.

Chasing a tgd

- find a substitution h that (1) h makes the LHS true in the constructed instance, and (2) h cannot be extended to a substitution that makes the RHS true in that instance
- @ apply h to the RHS, mapping the existentially quantified variables to fresh labelled nulls
- 3 add the resulting facts to the instance.

Chasing an egd

Find a substitution h such that makes the LHS true and $h(x_1) \neq h(x_2)$:

- if $h(x_1)$ and $h(x_2)$ are constants, then FAILURE
- otherwise, identify $h(x_1)$ and $h(x_2)$ (preferring constants).

Chase at work

Source and target databases

Source: Emp(N, A), Num(N, Id) Target: Name(Id, N), Addr(Id, A)

Source-to-target dependencies

 $\forall n, a. Emp(n, a) \Rightarrow \exists id. Name(id, n) \land Addr(id, a)$ $\forall n, a, id. Emp(n, a) \land Num(n, id) \Rightarrow Name(id, n)$

Target constraints

Name : $N \rightarrow Id$, Addr : $Id \rightarrow A$.

Chase sequence

$$\begin{split} &I_0 = \{ Emp(Li, LA), Num(Li, 111) \} \\ &I_1 = \{ Emp(Li, LA), Num(Li, 111), Name(id_1, Li), Addr(id_1, LA) \} \\ &I_2 = \{ Emp(Li, LA), Num(Li, 111), Name(id_1, Li), Addr(id_1, LA), Name(111, Li) \} \\ &I_3 = \{ Emp(Li, LA), Num(Li, 111), Name(111, Li), Addr(111, LA) \} \end{split}$$

Chase

Result

- there is a sequence of chase applications that ends in failure: no universal solution
- otherwise: every finite sequence that cannot be extended yields a universal solution

Acyclic tgds

- no cycles in the program dependency graph
 - nodes: relations
 - edges from the relations in the body of a tgd to the one in the head
- prevent the recurrent generation of labelled nulls
- more fine-grained analysis possible

Termination

For acyclic tgds, each chase sequence is of length polynomial in the size of the input.