
Chapter 3-4 and Exercises.
Written by : Dr. Chantana Chantrapornchai

1

Chapter 3 Summary
-Understand BNF, CFG representations.
-Understand how to create parse tree, how to show ambiguous grammar.
-Understand the concept of leftmost derivation, rightmost derivation.
-Understand left association, right association, precedence level in BNFs.
-Understand static semantic using the attribute grammar.
-Understand dynamic semantic using operational semantic, axiomatic semantic and
denotational semantic.
-Example of static type checking using validity function.

Chapter 4 Summary
-Understand language recognization using top down and bottom up style.
-Understand lexemes, tokens definitions.
-Able to read DFA and regular expression. Derive code using DFA to check lexemes.
-Know to create recursive descent parsing.
-Know to check syntax for LL(1) and LR(1).

Chapter 3-4 and Exercises.
Written by : Dr. Chantana Chantrapornchai

2

Exercise: Chapter 3

1. Given the following grammar,

Show that the grammar is ambiguous.

2. Based on the grammar

Create a parse tree for (a) 2*x + 3*y (b) x + y*(x+2)

3. Show that the following grammar

 is ambiguous for the code
 if (y > 0)
 if (x > 0) x = x+1;
 else y = y+1;

4. Why attribute grammar is said to be static? Also explain the following terms.
a. Inherit attribute
b. Synthesis attribute
c. Expected type
d. Actual type

5. What are static semantic, and dynamic semantic? How are they differed?

6. In C Language , what is the operational semantic of

7. Show the operational semantic of the following code.

while (exp1)
 statements;

<S> <A>
<A> <A> + <A> | <A> * <A> | id
<id> a| b |c

Chapter 3-4 and Exercises.
Written by : Dr. Chantana Chantrapornchai

3

8. In C Language , what is the operational semantic of

9. In Pascal Language , what is the operational semantic of the repeat-until loop?

10. Consider the syntax of if-statement.

C|B|Avar

var |var varexp

stmtexp ifif_stmt

ฎ

ฎ

ฎ

Consider the attribute grammar of the above rules.

1. Syntax rule : ฎ stmtexp ifif_stmt

 Semantic rule:
booleantypeectedxp _exp.e

2. Syntax rule : ฎ var varexp

Semantic rule:

undef_type else

boolean then

inteactual_typ var[3].

&&int_type[2].actualvarif_.e

 typeactualxp

predicate:
 typeectedtypeactual _exp.exp_.exp

while (exp1)
 statements;

i=0; j =1; x = 10;
do
{
 i = i+j;
 if (j %2 ==0)
 j = j+3;
 else j = j+2;
 x--;
} while (x > 0);

i = 5;
x = y =0;
do
{ if (x < 3)
 x = x+y*i;
 else
 x = x+y*i*2;
 i--;
}
while (i > 0);

repeat
 statements;
until (exp1);

Chapter 3-4 and Exercises.
Written by : Dr. Chantana Chantrapornchai

4

3. Syntax ฎ var exp

Semantic typeactualtypeactual _.var _.exp

predicate:
 typeectedtypeactual _exp.exp_.exp

4. Syntax CBA || var ฎ

Semantic).var(_ _.var typeuplooktypeactual

Suppose that we declare

 boolean A,C;
 int B;

 Show your work in analyzing the statement

 using the above attribute grammar. (Ignore the statement portion of the rule
1.) Can you compile the program? What are synthesized attributes and
inherited attributes?

11. For the grammar as following
bool_exp => (Var == exp)
exp => Var op Var | Var
op => && | ||
Var => A | B

Show how to extend this for attribute grammar.

12. Find the weakest precondition of

where the post condition is {x > 10}.

13. What is the loop invariant? What are its properties?
14. Consider the code

Find I and prove the correctness of the while loop using your I. Show your work.
15. Compute the weakest precondition and postcondition of the following sequence:

(5pts)

if (x>0)
{
 y = y-1;
 x = y -2;
}
else x = y-1;

 while (y != x)
 y = y-1;

if (A > B)
 C++;

A := 3 * (2 * B + A);
B := 2 * A – 1
{ B > 5 }

Chapter 3-4 and Exercises.
Written by : Dr. Chantana Chantrapornchai

5

16. Consider the code.

If we divide the code into portions,

Suppose Q = }0{ n and R = {s = 0+1+..+n}

And Loop invariant = { }..100 isnii

Prove initialization , finalization, and loop body using axiomatic semantic.

17. Given the denotational semantic for binary number as follows:

 Show your work of calculating the semantic for binary number 111.

18. Consider the C-Like logical pretest loop.

Assume the state S = { <i,1>, <x,1>,<N,3>}. Show your work of computing the
semantic of the loop using S based on M_l defined class.

int Sum (int n)
{
 int s=0;
 int i=0;
 while (i < n)
 {
 i =i+1;
 s = s+i;
 }
 return s;
}

{Q}
 int s=0;
 int i=0;
 {P}
 while (i < n)
 {
 i =i+1;
 s = s+i;
 }
 { (not test) and P}
 return s;
 {R}

initialization

loop body

finalization

x = 1;
i = 1;
while (i< N)
{
 x = x * 2 +i;
 i = i+1;
}

Chapter 3-4 and Exercises.
Written by : Dr. Chantana Chantrapornchai

6

19. What are the values of the following functions if tm={ <y,int>,<x,int>}?

a. typeOf(2+y*5,tm)
b. typeOf(x-y > 3*y,tm)

20. Given tm={ <i,int>,<even,int>}, compute the validity function of the following
code.

21. Consider the following code.

Using the denotational semantic.
(a) Write the initial state of the program at line 1.
(b) Trace the semantic of the program assuming the meaning of

M_assign, M_exp, and M_Loop. Show your work.
(c) Write down the state of the program at line 2.

22. Imitate the following semantic of M_bin. Write the denotational semantic of

M_dec.

if (i%2 == 0) even = even+1;
while (even > 0)
 even = even -1;

int main(int argc, char *argv[])
{
 int x=0;
 int i,j;
 i=0; j=5; //1
 while (i < j)
 {
 i++; j--;
 x += i+j;
 } //2
}

Chapter 3-4 and Exercises.
Written by : Dr. Chantana Chantrapornchai

7

Exercise : Chapter 4

23. Based on the grammar:
Create a rightmost derivation and a parse tree for x* 2+ y (10 pts)

Is the grammar left association or right association?
For the rule TฎF | T * F
Eliminate the left recursion.

24. Give an example of regular expressions.
25. What are benefits of using BNF form?
26. What are benefits of separating lexical analysis and syntax analysis?
27. What is a token lookahead?
28. Why do we need to get rid of left factor and left recursion in topdown parsers?
29. Given the following grammar, show your work in eliminating the left factor.

A ฎAb | Ac
A ฎ x

Assume A is a nonterminal, b,c,x are terminals.

30. The chapter gives an example of using endif marker for solving ambiguous
grammar for if statement. What are pros and cons?

31. Consider the following parsing table and grammar.

 Show your work in parsing the following expression:
- id+(id*id)
- id* (id+id)
in the following format.

�.E ฎE+T

�. E ฎ T

�.T ฎT*F

�.T ฎ F

�.F ฎ (E)

�.F ฎ id

Chapter 3-4 and Exercises.
Written by : Dr. Chantana Chantrapornchai

8

32. Consider the following state diagram. And the following utility subprogram. Write
a section of code for lexical analysis part that implements the following state
diagram.

(a)

12 13 14 15 16

17

18

19

start digit . E

+ or -

other

digit

digit

digit

digit

digit

digit

digit

Stack Input Action

getChar - gets the next character of input, puts it in
nextChar, determines its class and puts the class in
charClass

addChar - puts the character from nextChar into the
place the lexeme is being accumulated, lexeme
lookup - determines whether the string in lexeme is a

reserved word (returns a code)

Chapter 3-4 and Exercises.
Written by : Dr. Chantana Chantrapornchai

9

 (b)

33. Consider the following grammar.

 S ฎ S + E | a
E ฎ id
(a) Eliminate left recursion. Rewrite the grammar.

 (b) Write the recursive descent parser for the grammar.

34. Consider the parsing table for LL Grammar given as following.

 Show your work in parsing id*(id)

S t a c k I n p u t o u t p u t

