
MIPS ISA Review.1

Computer Organization & Architecture

Lecture 02: MIPS ISA Review

Slides are by Mary Jane Irwin
[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2005, UCB]

MIPS ISA Review.2

(vonNeumann) Processor Organization

 Control needs to

1. input instructions from Memory

2. issue signals to control the
information flow between the
Datapath components and to
control what operations they
perform

3. control instruction sequencing

Fetch

DecodeExec

CPU

Control

Datapath

Memory Devices

Input

Output

 Datapath needs to have the

 components – the functional units and
storage (e.g., register file) needed to execute instructions

 interconnects - components connected so that the instructions can
be accomplished and so that data can be loaded from and stored
to Memory

MIPS ISA Review.3

For a given level of function, however, that system is best in
which one can specify things with the most simplicity and
straightforwardness. … Simplicity and
straightforwardness proceed from conceptual integrity.
… Ease of use, then, dictates unity of design,
conceptual integrity.

The Mythical Man-Month, Brooks, pg 44

MIPS ISA Review.4

RISC - Reduced Instruction Set Computer

 RISC philosophy

 fixed instruction lengths

 load-store instruction sets

 limited addressing modes

 limited operations

 MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC, Intel
(Compaq) Alpha, …

 Instruction sets are measured by how well compilers
use them as opposed to how well assembly language
programmers use them

Design goals: speed, cost (design, fabrication, test,
packaging), size, power consumption, reliability,

memory space (embedded systems)

MIPS ISA Review.5

MIPS R3000 Instruction Set Architecture (ISA)

 Instruction Categories

 Computational

 Load/Store

 Jump and Branch

 Floating Point

- coprocessor

 Memory Management

 Special

R0 - R31

PC

HI

LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

MIPS ISA Review.6

Review: Unsigned Binary Representation

Hex Binary Decimal

0x00000000 0…0000 0

0x00000001 0…0001 1

0x00000002 0…0010 2

0x00000003 0…0011 3

0x00000004 0…0100 4

0x00000005 0…0101 5

0x00000006 0…0110 6

0x00000007 0…0111 7

0x00000008 0…1000 8

0x00000009 0…1001 9

…

0xFFFFFFFC 1…1100

0xFFFFFFFD 1…1101

0xFFFFFFFE 1…1110

0xFFFFFFFF 1…1111 232 - 1

232 - 2

232 - 3

232 - 4

232 - 1

1 1 1 . . . 1 1 1 1 bit

31 30 29 . . . 3 2 1 0 bit position

231 230 229 . . . 23 22 21 20 bit weight

1 0 0 0 . . . 0 0 0 0 - 1

MIPS ISA Review.7

Aside: Beyond Numbers

 American Std Code for Info Interchange (ASCII): 8-bit
bytes representing characters

ASCII Char ASCII Char ASCII Char ASCII Char ASCII Char ASCII Char

0 Null 32 space 48 0 64 @ 96 ` 112 p

1 33 ! 49 1 65 A 97 a 113 q

2 34 “ 50 2 66 B 98 b 114 r

3 35 # 51 3 67 C 99 c 115 s

4 EOT 36 $ 52 4 68 D 100 d 116 t

5 37 % 53 5 69 E 101 e 117 u

6 ACK 38 & 54 6 70 F 102 f 118 v

7 39 ‘ 55 7 71 G 103 g 119 w

8 bksp 40 (56 8 72 H 104 h 120 x

9 tab 41) 57 9 73 I 105 i 121 y

10 LF 42 * 58 : 74 J 106 j 122 z

11 43 + 59 ; 75 K 107 k 123 {

12 FF 44 , 60 < 76 L 108 l 124 |

15 47 / 63 ? 79 O 111 o 127 DEL

MIPS ISA Review.8

MIPS Arithmetic Instructions

 MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

 Each arithmetic instruction performs only one
operation

 Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination source1 op source2

 Those operands are all contained in the datapath’s
register file ($t0,$s1,$s2) – indicated by $

 Operand order is fixed (destination first)

MIPS ISA Review.9

MIPS Arithmetic Instructions

 MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

 Each arithmetic instruction performs only one
operation

 Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination source1 op source2

 Each arithmetic instruction performs only one
operation

 Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

destination source1 op source2

 Operand order is fixed (destination first)

 Those operands are all contained in the datapath’s
register file ($t0,$s1,$s2) – indicated by $

MIPS ISA Review.10

Aside: MIPS Register Convention

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

MIPS ISA Review.11

MIPS Register File
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

325

32

5

5

32

 Holds thirty-two 32-bit registers

 Two read ports and

 One write port

 Registers are

 Faster than main memory

- But register files with more locations
are slower (e.g., a 64 word file could
be as much as 50% slower than a 32 word file)

- Read/write port increase impacts speed quadratically

 Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs.
stack

 Can hold variables so that

- code density improves (since register are named with fewer bits
than a memory location)

write control

MIPS ISA Review.12

 Instructions, like registers and words of data, are 32 bits
long

 Arithmetic Instruction Format (R format):

add $t0, $s1, $s2

Machine Language - Add Instruction

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

MIPS ISA Review.13

MIPS Memory Access Instructions

 MIPS has two basic data transfer instructions for
accessing memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

 The data is loaded into (lw) or stored from (sw) a register
in the register file – a 5 bit address

 The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

 A 16-bit field meaning access is limited to memory locations
within a region of 213 or 8,192 words (215 or 32,768 bytes) of
the address in the base register

 Note that the offset can be positive or negative

MIPS ISA Review.14

 Load/Store Instruction Format (I format):

lw $t0, 24($s2)

Machine Language - Load Instruction

op rs rt 16 bit offset

Memory

data word address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 =
0x120040ac

0x120040ac$t0

MIPS ISA Review.15

Byte Addresses

 Since 8-bit bytes are so useful, most architectures
address individual bytes in memory

 The memory address of a word must be a multiple of 4
(alignment restriction)

 Big Endian: leftmost byte is word address
IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

 Little Endian: rightmost byte is word address
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb

3 2 1 0
little endian byte 0

0 1 2 3

big endian byte 0

MIPS ISA Review.16

Aside: Loading and Storing Bytes

 MIPS provides special instructions to move bytes

lb $t0, 1($s3) #load byte from memory

sb $t0, 6($s3) #store byte to memory

op rs rt 16 bit offset

 What 8 bits get loaded and stored?

 load byte places the byte from memory in the rightmost 8 bits of
the destination register

- what happens to the other bits in the register?

 store byte takes the byte from the rightmost 8 bits of a register
and writes it to a byte in memory

- what happens to the other bits in the memory word?

MIPS ISA Review.17

 MIPS conditional branch instructions:

bne $s0, $s1, Lbl #go to Lbl if $s0$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

 Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1

add $s3, $s0, $s1
Lbl1: ...

MIPS Control Flow Instructions

 Instruction Format (I format):

op rs rt 16 bit offset

 How is the branch destination address specified?

MIPS ISA Review.18

Specifying Branch Destinations

 Use a register (like in lw and sw) added to the 16-bit offset

 which register? Instruction Address Register (the PC)

- its use is automatically implied by instruction

- PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction

 limits the branch distance to -215 to +215-1 instructions from the
(instruction after the) branch instruction, but most branches are
local anyway

PC
Add

32

32 32

32

32

offset

16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst
address

?
Add

4 32

MIPS ISA Review.19

 We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need yet
another instruction, slt

 Set on less than instruction:

slt $t0, $s0, $s1 # if $s0 < $s1 then
$t0 = 1 else
$t0 = 0

 Instruction format (R format):

2

More Branch Instructions

op rs rt rd funct

MIPS ISA Review.20

More Branch Instructions, Con’t

 Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions

 less than blt $s1, $s2, Label

 less than or equal to ble $s1, $s2, Label

 greater than bgt $s1, $s2, Label

 great than or equal to bge $s1, $s2, Label

slt $at, $s1, $s2 #$at set to 1 if

bne $at, $zero, Label # $s1 < $s2

 Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler

 Its why the assembler needs a reserved register ($at)

MIPS ISA Review.21

 MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

Other Control Flow Instructions

 Instruction Format (J Format):

op 26-bit address

PC

4

32

26

32

00

from the low order 26 bits of the jump instruction

MIPS ISA Review.22

Aside: Branching Far Away

 What if the branch destination is further away than can
be captured in 16 bits?

 The assembler comes to the rescue – it inserts an
unconditional jump to the branch target and inverts the
condition

beq $s0, $s1, L1

becomes

bne $s0, $s1, L2

j L1
L2:

MIPS ISA Review.23

 MIPS procedure call instruction:

jal ProcedureAddress #jump and link

 Saves PC+4 in register $ra to have a link to the next
instruction for the procedure return

 Machine format (J format):

 Then can do procedure return with a

jr $ra #return

 Instruction format (R format):

Instructions for Accessing Procedures

op 26 bit address

op rs funct

MIPS ISA Review.24

Aside: Spilling Registers

 What if the callee needs more registers? What if the
procedure is recursive?

 uses a stack – a last-in-first-out queue – in memory for passing
additional values or saving (recursive) return address(es)

 One of the general registers,
$sp, is used to address the
stack (which “grows” from high
address to low address)

 add data onto the stack – push

$sp = $sp – 4
data on stack at new $sp

 remove data from the stack – pop

data from stack at $sp
$sp = $sp + 4

low addr

high addr

$sptop of stack

MIPS ISA Review.25

addi $sp, $sp, 4 #$sp = $sp + 4

slti $t0, $s2, 15 #$t0 = 1 if $s2<15

 Machine format (I format):

MIPS Immediate Instructions

op rs rt 16 bit immediate I format

 Small constants are used often in typical code

 Possible approaches?

 put “typical constants” in memory and load them

 create hard-wired registers (like $zero) for constants like 1

 have special instructions that contain constants !

 The constant is kept inside the instruction itself!

 Immediate format limits values to the range +215–1 to -215

MIPS ISA Review.26

 We'd also like to be able to load a 32 bit constant into a
register, for this we must use two instructions

 a new "load upper immediate" instruction

lui $t0, 1010101010101010

 Then must get the lower order bits right, use
ori $t0, $t0, 1010101010101010

Aside: How About Larger Constants?

16 0 8 1010101010101010

1010101010101010

0000000000000000 1010101010101010

0000000000000000

1010101010101010 1010101010101010

MIPS ISA Review.27

MIPS Organization So Far

Processor
Memory

32 bits

230

words

read/write
addr

read data

write data

word address
(binary)

0…0000
0…0100
0…1000
0…1100

1…1100
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32

32

32

32

5

5

5

PC

ALU

32 32

32

32

32

0 1 2 3

7654

byte address
(big Endian)

Fetch
PC = PC+4

DecodeExec

Add
32

32
4

Add
32

32
branch offset

MIPS ISA Review.28

MIPS ISA So Far

Category Instr Op Code Example Meaning

Arithmetic

(R & I
format)

add 0 and 32 add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract 0 and 34 sub $s1, $s2, $s3 $s1 = $s2 - $s3

add immediate 8 addi $s1, $s2, 6 $s1 = $s2 + 6

or immediate 13 ori $s1, $s2, 6 $s1 = $s2 v 6

Data
Transfer

(I format)

load word 35 lw $s1, 24($s2) $s1 = Memory($s2+24)

store word 43 sw $s1, 24($s2) Memory($s2+24) = $s1

load byte 32 lb $s1, 25($s2) $s1 = Memory($s2+25)

store byte 40 sb $s1, 25($s2) Memory($s2+25) = $s1

load upper imm 15 lui $s1, 6 $s1 = 6 * 216

Cond.
Branch
(I & R
format)

br on equal 4 beq $s1, $s2, L if ($s1==$s2) go to L

br on not equal 5 bne $s1, $s2, L if ($s1 !=$s2) go to L

set on less than 0 and 42 slt $s1, $s2, $s3 if ($s2<$s3) $s1=1 else
$s1=0

set on less than
immediate

10 slti $s1, $s2, 6 if ($s2<6) $s1=1 else
$s1=0

Uncond.
Jump
(J & R
format)

jump 2 j 2500 go to 10000

jump register 0 and 8 jr $t1 go to $t1

jump and link 3 jal 2500 go to 10000; $ra=PC+4

MIPS ISA Review.29

Review of MIPS Operand Addressing Modes

 Register addressing – operand is in a register

 Base (displacement) addressing – operand is at the
memory location whose address is the sum of a register
and a 16-bit constant contained within the instruction

 Register relative (indirect) with 0($a0)

 Pseudo-direct with addr($zero)

 Immediate addressing – operand is a 16-bit constant
contained within the instruction

op rs rt rd funct Register

word operand

base register

op rs rt offset Memory

word or byte operand

op rs rt operand

MIPS ISA Review.30

Review of MIPS Instruction Addressing Modes

 PC-relative addressing –instruction address is the sum of
the PC and a 16-bit constant contained within the
instruction

 Pseudo-direct addressing – instruction address is the 26-
bit constant contained within the instruction concatenated
with the upper 4 bits of the PC

op rs rt offset

Program Counter (PC)

Memory

branch destination instruction

op jump address

Program Counter (PC)

Memory

jump destination instruction||

MIPS ISA Review.31

MIPS (RISC) Design Principles

 Simplicity favors regularity

 fixed size instructions – 32-bits

 small number of instruction formats

 opcode always the first 6 bits

 Good design demands good compromises

 three instruction formats

 Smaller is faster

 limited instruction set

 limited number of registers in register file

 limited number of addressing modes

 Make the common case fast

 arithmetic operands from the register file (load-store machine)

 allow instructions to contain immediate operands

MIPS ISA Review.32

Next Lecture
 Next lecture

 MIPS ALU Review

- Reading assignment – PH, Chapter 3

- Your work starts here. Understanding MIPS instruction set and
SPIM http://spimsimulator.sourceforge.net/

