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Lecture 09: Multiple Issue Introduction

Mary Jane Irwin ( www.cse.psu.edu/~mji ) 
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[Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005 
and

Superscalar Microprocessor Design, Johnson, © 1992]
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Review:  Pipeline Hazards

 Structural hazards

 Design pipeline to eliminate structural hazards

 Data hazards – read before write

 Use data forwarding inside the pipeline

 For those cases that forwarding won’t solve (e.g., load-use) 
include hazard hardware to insert stalls in the instruction stream

 Control hazards – beq, bne,j,jr,jal

 Stall – hurts performance

 Move decision point as early in the pipeline as possible – reduces 
number of stalls at the cost of additional hardware

 Delay decision (requires compiler support) – not feasible for 
deeper pipes requiring more than one delay slot to be filled

 Predict – with even more hardware, can reduce the impact of 
control hazard stalls even further if the branch prediction (BHT) is 
correct and if the branched-to instruction is cached (BTB)
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Extracting Yet More Performance

 Two options:

 Increase the depth of the pipeline to increase the clock rate –
superpipelining (more details to come)

 Fetch (and execute) more than one instructions at one time 
(expand every pipeline stage to accommodate multiple 
instructions) – multiple-issue

 Launching multiple instructions per stage allows the 
instruction execution rate, CPI, to be less than 1

 So instead we use IPC:  instructions per clock cycle

- E.g., a 6 GHz, four-way multiple-issue processor can execute at a 
peak rate of 24 billion instructions per second with a best case CPI 
of 0.25  or a best case IPC of 4

 If the datapath has a five stage pipeline, how many instructions 
are active in the pipeline at any given time?
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Superpipelined Processors

 Increase the depth of the pipeline leading to shorter clock 
cycles (and more instructions “in flight” at one time)

 The higher the degree of superpipelining, the more 
forwarding/hazard hardware needed, the more pipeline latch 
overhead (i.e., the pipeline latch accounts for a larger and larger 
percentage of the clock cycle time), and the bigger the clock 
skew issues (i.e., because of faster and faster clocks)

Superpipelined  vs Superscalar

 Superpipelined processors have longer instruction 
latency than the SS processors which can degrade 
performance in the presence of true dependencies

 Superscalar processors are more susceptible to resource 
conflicts – but we can fix this with hardware !
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Instruction vs Machine Parallelism

 Instruction-level parallelism (ILP) of a program – a 
measure of the average number of instructions in a 
program that a processor might be able to execute at the 
same time

 Mostly determined by the number of true (data) dependencies 
and procedural (control) dependencies in relation to the number 
of other instructions

 Data-level parallelism (DLP)
DO  I = 1  TO  100

A[I] = A[I] + 1
CONTINUE

 Machine parallelism of a                                            
processor – a measure of the ability of the processor to 
take advantage of the ILP of the program

 Determined by the number of instructions that can be fetched 
and executed at the same time

 To achieve high performance, need both ILP and 
machine parallelism
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Multiple-Issue Processor Styles

 Static multiple-issue processors (aka VLIW)

 Decisions on which instructions to execute simultaneously are 
being made statically (at compile time by the compiler)

 E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC 
(Explicit Parallel Instruction Computer)

 Dynamic multiple-issue processors (aka superscalar)

 Decisions on which instructions to execute simultaneously are 
being made dynamically (at run time by the hardware)

 E.g., IBM Power 2, Pentium 4, MIPS R10K, HP PA 8500
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Multiple-Issue Datapath Responsibilities

 Must handle, with a combination of hardware and software 
fixes, the fundamental limitations of 

 Storage (data) dependencies – aka data hazards

- Limitation more severe in a SS/VLIW processor due to (usually) low 
ILP

 Procedural dependencies – aka control hazards

- Ditto, but even more severe

- Use dynamic branch prediction to help resolve the ILP issue

 Resource conflicts – aka structural hazards

- A SS/VLIW processor has a much larger number of potential 
resource conflicts

- Functional units may have to arbitrate for result buses and register-
file write ports

- Resource conflicts can be eliminated by duplicating the resource or 
by pipelining the resource
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Instruction Issue and Completion Policies

 Instruction-issue – initiate execution

 Instruction lookahead capability – fetch, decode and issue 
instructions beyond the current instruction

 Instruction-completion – complete execution

 Processor lookahead capability – complete issued instructions 
beyond the current instruction

 Instruction-commit – write back results to the RegFile or 
D$ (i.e., change the machine state)

In-order issue with in-order completion

In-order issue with out-of-order completion

Out-of-order issue with out-of-order completion

Out-of-order issue with out-of-order completion and in-order 
commit
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In-Order Issue with In-Order Completion

 Simplest policy is to issue instructions in exact program 
order and to complete them in the same order they were 
fetched (i.e., in program order)

 Example:

 Assume a pipelined processor that can fetch and decode two
instructions per cycle, that has three functional units (a single 
cycle adder, a single cycle shifter, and a two cycle multiplier), 
and that can complete (and write back) two results per cycle

 And an instruction sequence with the following characteristics

I1 – needs two execute cycles (a multiply)
I2
I3
I4 – needs the same function unit as I3
I5 – needs data value produced by I4
I6 – needs the same function unit as I5



Multiple Issue Intro.10

In-Order Issue, In-Order Completion Example
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In-Order Issue, In-Order Completion Example
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In-Order Issue with Out-of-Order Completion

 With out-of-order completion, a later instruction may 
complete before a previous instruction

 Out-of-order completion is used in single-issue pipelined 
processors to improve the performance of long-latency 
operations such as divide

 When using out-of-order completion instruction issue is 
stalled when there is a resource conflict (e.g., for a 
functional unit) or when the instructions ready to issue 
need a result that has not yet been computed
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IOI-OOC Example
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IOI-OOC Example
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Handling Output Dependencies

 There is one more situation that stalls instruction issuing 
with IOI-OOC, assume I1 – writes to R3

I2 – writes to R3
I5 – reads R3

 If the I1 write occurs after the I2 write, then I5 reads an incorrect 
value for R3

 I2 has an output dependency on I1 – write before write

- The issuing of I2 would have to be stalled if its result might later be 
overwritten by an previous instruction (i.e., I1) that takes longer to 
complete – the stall happens before instruction issue

 While IOI-OOC yields higher performance, it requires 
more dependency checking hardware

 Dependency checking needed to resolve both  read before write
and write before write
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Out-of-Order Issue with Out-of-Order Completion

 With in-order issue the processor stops decoding 
instructions whenever a decoded instruction has a 
resource conflict or a data dependency on an issued, but 
uncompleted instruction

 The processor is not able to look beyond the conflicted 
instruction even though more downstream instructions might 
have no conflicts and thus be issueable

 Fetch and decode instructions beyond the conflicted one,
store them in an instruction buffer (as long as there’s 
room), and flag those instructions in the buffer that don’t 
have resource conflicts or data dependencies

 Flagged instructions are then issued from the buffer 
without regard to their program order
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OOI-OOC Example
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Antidependencies

 With OOI also have to deal with data antidependencies –
when a later instruction (that completes earlier) produces 
a data value that destroys a data value used as a source 
in an earlier instruction (that issues later)

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1

 The constraint is similar to that of true data 
dependencies, except reversed

 Instead of the later instruction using a value (not yet) produced 
by an earlier instruction (read before write), the later instruction 
produces a value that destroys a value that the earlier instruction 
(has not yet) used (write before read)

True data dependency
Output dependency
Antidependency
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Dependencies Review

 Each of the three data dependencies

 True data dependencies (read before write)

 Antidependencies (write before read)

 Output dependencies (write before write)

manifests itself through the use of registers (or other 
storage locations)

 True dependencies represent the flow of data and 
information through a program

 Anti- and output dependencies arise because the limited 
number of registers mean that programmers reuse 
registers for different computations

 When instructions are issued out-of-order, the 
correspondence between registers and values breaks 
down and the values conflict for registers

storage conflicts



Multiple Issue Intro.20

Storage Conflicts and Register Renaming

 Storage conflicts can be reduced (or eliminated) by 
increasing or duplicating the troublesome resource

 Provide additional registers that are used to reestablish the 
correspondence between registers and values

- Allocated dynamically by the hardware in SS processors

 Register renaming – the processor renames the original 
register identifier in the instruction to a new register (one 
not in the visible register set)

R3b := R3a * R5a
R4a := R3b + 1
R3c := R5a + 1

 The hardware that does renaming assigns a “replacement”
register from a pool of free registers and releases it back to the 
pool when its value is superseded and there are no outstanding 
references to it

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1
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Next Lecture and Reminders

 Next lecture

 A MIPS superscalar execution model

- Reading assignment – Sohi paper, Johnson Chapter 3 (optional)


