
Multiple Issue Intro.1

Lecture 09: Multiple Issue Introduction

Mary Jane Irwin (www.cse.psu.edu/~mji)

www.cse.psu.edu/~cg431

[Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
and

Superscalar Microprocessor Design, Johnson, © 1992]

Multiple Issue Intro.2

Review: Pipeline Hazards

 Structural hazards

 Design pipeline to eliminate structural hazards

 Data hazards – read before write

 Use data forwarding inside the pipeline

 For those cases that forwarding won’t solve (e.g., load-use)
include hazard hardware to insert stalls in the instruction stream

 Control hazards – beq, bne,j,jr,jal

 Stall – hurts performance

 Move decision point as early in the pipeline as possible – reduces
number of stalls at the cost of additional hardware

 Delay decision (requires compiler support) – not feasible for
deeper pipes requiring more than one delay slot to be filled

 Predict – with even more hardware, can reduce the impact of
control hazard stalls even further if the branch prediction (BHT) is
correct and if the branched-to instruction is cached (BTB)

Multiple Issue Intro.3

Extracting Yet More Performance

 Two options:

 Increase the depth of the pipeline to increase the clock rate –
superpipelining (more details to come)

 Fetch (and execute) more than one instructions at one time
(expand every pipeline stage to accommodate multiple
instructions) – multiple-issue

 Launching multiple instructions per stage allows the
instruction execution rate, CPI, to be less than 1

 So instead we use IPC: instructions per clock cycle

- E.g., a 6 GHz, four-way multiple-issue processor can execute at a
peak rate of 24 billion instructions per second with a best case CPI
of 0.25 or a best case IPC of 4

 If the datapath has a five stage pipeline, how many instructions
are active in the pipeline at any given time?

Multiple Issue Intro.4

Superpipelined Processors

 Increase the depth of the pipeline leading to shorter clock
cycles (and more instructions “in flight” at one time)

 The higher the degree of superpipelining, the more
forwarding/hazard hardware needed, the more pipeline latch
overhead (i.e., the pipeline latch accounts for a larger and larger
percentage of the clock cycle time), and the bigger the clock
skew issues (i.e., because of faster and faster clocks)

Superpipelined vs Superscalar

 Superpipelined processors have longer instruction
latency than the SS processors which can degrade
performance in the presence of true dependencies

 Superscalar processors are more susceptible to resource
conflicts – but we can fix this with hardware !

Multiple Issue Intro.5

Instruction vs Machine Parallelism

 Instruction-level parallelism (ILP) of a program – a
measure of the average number of instructions in a
program that a processor might be able to execute at the
same time

 Mostly determined by the number of true (data) dependencies
and procedural (control) dependencies in relation to the number
of other instructions

 Data-level parallelism (DLP)
DO I = 1 TO 100

A[I] = A[I] + 1
CONTINUE

 Machine parallelism of a
processor – a measure of the ability of the processor to
take advantage of the ILP of the program

 Determined by the number of instructions that can be fetched
and executed at the same time

 To achieve high performance, need both ILP and
machine parallelism

Multiple Issue Intro.6

Multiple-Issue Processor Styles

 Static multiple-issue processors (aka VLIW)

 Decisions on which instructions to execute simultaneously are
being made statically (at compile time by the compiler)

 E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC
(Explicit Parallel Instruction Computer)

 Dynamic multiple-issue processors (aka superscalar)

 Decisions on which instructions to execute simultaneously are
being made dynamically (at run time by the hardware)

 E.g., IBM Power 2, Pentium 4, MIPS R10K, HP PA 8500

Multiple Issue Intro.7

Multiple-Issue Datapath Responsibilities

 Must handle, with a combination of hardware and software
fixes, the fundamental limitations of

 Storage (data) dependencies – aka data hazards

- Limitation more severe in a SS/VLIW processor due to (usually) low
ILP

 Procedural dependencies – aka control hazards

- Ditto, but even more severe

- Use dynamic branch prediction to help resolve the ILP issue

 Resource conflicts – aka structural hazards

- A SS/VLIW processor has a much larger number of potential
resource conflicts

- Functional units may have to arbitrate for result buses and register-
file write ports

- Resource conflicts can be eliminated by duplicating the resource or
by pipelining the resource

Multiple Issue Intro.8

Instruction Issue and Completion Policies

 Instruction-issue – initiate execution

 Instruction lookahead capability – fetch, decode and issue
instructions beyond the current instruction

 Instruction-completion – complete execution

 Processor lookahead capability – complete issued instructions
beyond the current instruction

 Instruction-commit – write back results to the RegFile or
D$ (i.e., change the machine state)

In-order issue with in-order completion

In-order issue with out-of-order completion

Out-of-order issue with out-of-order completion

Out-of-order issue with out-of-order completion and in-order
commit

Multiple Issue Intro.9

In-Order Issue with In-Order Completion

 Simplest policy is to issue instructions in exact program
order and to complete them in the same order they were
fetched (i.e., in program order)

 Example:

 Assume a pipelined processor that can fetch and decode two
instructions per cycle, that has three functional units (a single
cycle adder, a single cycle shifter, and a two cycle multiplier),
and that can complete (and write back) two results per cycle

 And an instruction sequence with the following characteristics

I1 – needs two execute cycles (a multiply)
I2
I3
I4 – needs the same function unit as I3
I5 – needs data value produced by I4
I6 – needs the same function unit as I5

Multiple Issue Intro.10

In-Order Issue, In-Order Completion Example

E
XIF

ID
WB

I
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6
E

XIF
ID

WB

E
X

E
X WB

E
X WB

E
XIF

ID
WB

E
XIF

ID
WB

IF
ID

IF
ID

I1 –two execute cycles
I2
I3
I4 –same function unit as I3
I5 –data value produced by I4
I6 –same function unit as I5

In parallel can
Fetch/decode 2
Commit 2

IF
ID

IF
ID

IF
ID

Multiple Issue Intro.11

In-Order Issue, In-Order Completion Example

E
XIF

ID
WB

I
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6
E

XIF
ID

WB

E
X

E
X WB

E
X WB

E
XIF

ID
WB

E
XIF

ID
WB

IF
ID

IF
ID

I1 –two execute cycles
I2
I3
I4 –same function unit as I3
I5 –data value produced by I4
I6 –same function unit as I5

In parallel can
Fetch/decode 2
Commit 2

IF
ID

IF
ID

IF
ID

need forwarding
hardware

8 cycles in total

Multiple Issue Intro.12

In-Order Issue with Out-of-Order Completion

 With out-of-order completion, a later instruction may
complete before a previous instruction

 Out-of-order completion is used in single-issue pipelined
processors to improve the performance of long-latency
operations such as divide

 When using out-of-order completion instruction issue is
stalled when there is a resource conflict (e.g., for a
functional unit) or when the instructions ready to issue
need a result that has not yet been computed

Multiple Issue Intro.13

IOI-OOC Example

E
XIF

ID
WB

I
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6

E
XIF

ID
WB

E
X

E
XIF
ID

WB

E
XIF

ID
WB

E
XIF

ID
WB

E
XIF

ID
WB

IF
ID

IF
ID

I1 –two execute cycles
I2
I3
I4 –same function unit as I3
I5 –data value produced by I4
I6 –same function unit as I5

Multiple Issue Intro.14

IOI-OOC Example

E
XIF

ID
WB

I
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6

E
XIF

ID
WB

E
X

E
XIF
ID

WB

E
XIF

ID
WB

E
XIF

ID
WB

E
XIF

ID
WB

IF
ID

IF
ID

I1 –two execute cycles
I2
I3
I4 –same function unit as I3
I5 –data value produced by I4
I6 –same function unit as I5

7 cycles in total

Multiple Issue Intro.15

Handling Output Dependencies

 There is one more situation that stalls instruction issuing
with IOI-OOC, assume I1 – writes to R3

I2 – writes to R3
I5 – reads R3

 If the I1 write occurs after the I2 write, then I5 reads an incorrect
value for R3

 I2 has an output dependency on I1 – write before write

- The issuing of I2 would have to be stalled if its result might later be
overwritten by an previous instruction (i.e., I1) that takes longer to
complete – the stall happens before instruction issue

 While IOI-OOC yields higher performance, it requires
more dependency checking hardware

 Dependency checking needed to resolve both read before write
and write before write

Multiple Issue Intro.16

Out-of-Order Issue with Out-of-Order Completion

 With in-order issue the processor stops decoding
instructions whenever a decoded instruction has a
resource conflict or a data dependency on an issued, but
uncompleted instruction

 The processor is not able to look beyond the conflicted
instruction even though more downstream instructions might
have no conflicts and thus be issueable

 Fetch and decode instructions beyond the conflicted one,
store them in an instruction buffer (as long as there’s
room), and flag those instructions in the buffer that don’t
have resource conflicts or data dependencies

 Flagged instructions are then issued from the buffer
without regard to their program order

Multiple Issue Intro.17

OOI-OOC Example

E
XIF

ID
WB

I
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6

E
XIF

ID
WB

E
X

E
XIF

ID
WB

E
XIF

ID
WB

E
XIF

ID
WB

E
XIF

ID
WB

I1 –two execute cycles
I2
I3
I4 –same function unit as I3
I5 –data value produced by I4
I6 –same function unit as I5

6 cycles in total

IF
ID

IF
ID

Multiple Issue Intro.18

Antidependencies

 With OOI also have to deal with data antidependencies –
when a later instruction (that completes earlier) produces
a data value that destroys a data value used as a source
in an earlier instruction (that issues later)

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1

 The constraint is similar to that of true data
dependencies, except reversed

 Instead of the later instruction using a value (not yet) produced
by an earlier instruction (read before write), the later instruction
produces a value that destroys a value that the earlier instruction
(has not yet) used (write before read)

True data dependency
Output dependency
Antidependency

Multiple Issue Intro.19

Dependencies Review

 Each of the three data dependencies

 True data dependencies (read before write)

 Antidependencies (write before read)

 Output dependencies (write before write)

manifests itself through the use of registers (or other
storage locations)

 True dependencies represent the flow of data and
information through a program

 Anti- and output dependencies arise because the limited
number of registers mean that programmers reuse
registers for different computations

 When instructions are issued out-of-order, the
correspondence between registers and values breaks
down and the values conflict for registers

storage conflicts

Multiple Issue Intro.20

Storage Conflicts and Register Renaming

 Storage conflicts can be reduced (or eliminated) by
increasing or duplicating the troublesome resource

 Provide additional registers that are used to reestablish the
correspondence between registers and values

- Allocated dynamically by the hardware in SS processors

 Register renaming – the processor renames the original
register identifier in the instruction to a new register (one
not in the visible register set)

R3b := R3a * R5a
R4a := R3b + 1
R3c := R5a + 1

 The hardware that does renaming assigns a “replacement”
register from a pool of free registers and releases it back to the
pool when its value is superseded and there are no outstanding
references to it

R3 := R3 * R5
R4 := R3 + 1
R3 := R5 + 1

Multiple Issue Intro.21

Next Lecture and Reminders

 Next lecture

 A MIPS superscalar execution model

- Reading assignment – Sohi paper, Johnson Chapter 3 (optional)

