
2. Introduction to Network
Applications and the Web

n  Application architectures
n  Transport services
n  Browser and web server interaction

n  Cookies
n  Web caches and conditional GET

From Jon Turner – based on material from Kurose and Ross

Goals

n  conceptual,
implementation aspects
of network application
protocols
» transport-layer

service models
» client-server

paradigm
» peer-to-peer

paradigm

n  learn about protocols by
examining popular
application-level protocols
» HTTP
»  FTP
» SMTP / POP3 / IMAP (email)
» DNS

n  creating network
applications
» socket API

2

Application Architectures

n Applications implemented by software on end-systems
»  no need to modify network components to enable new apps

n Client-server
»  server expected to be “always-on”, has static IP address (usually)
»  clients may come and go and change address frequently
»  clients interact indirectly through servers (if at all)

n Peer-to-peer (P2P)
»  all end systems play comparable roles
» may come and go at any time

n Hybrid of client-server and P2P
»  client-server for setup/control, p2p for direct interaction

•  examples: Skype, instant messaging
» Commercial p2p for initial product distribution, fallback to server

•  example: Grooveshark

3

Communicating Processes

n A process is a program running on a host
» processes on same host communicate using OS-specific

mechanisms
» processes on different hosts communicate by exchanging

messages across a network

n Communicating pair of processes play distinct roles
» server process waits for communication requests
» client process initiates communication with waiting server
» a process may act both as a client and a server

(for example, in p2p applications)

n Processes communicate thru sockets
» standard API to network software
» provides choice of transport service
» allows configuration of selected parameters

socket

 OS network
software

Process

4

Addressing Processes

n An IP address identifies a host, but not a process
» since host may have many communicating processes running

simultaneously, need some way to identify them

n Internet transport protocols use port numbers to
designate specific programs within a host
» packets carry a source port# and a destination port#
» operating systems map port numbers to sockets
» so, packets sent through a socket are tagged with the source

port# assigned to the socket
» packets received with a given destination port# are delivered to

the socket to which that port# was assigned
n Some ports are reserved for specific applications

»  for example: port 80 is used by web servers, port 25 for email
» allows remote client to easily connect to application

5

Review Questions

n What are port numbers used for?
a)  to identify specific interfaces of a router
b)  to identify a process running on a host
c)  to identify physical interfaces on a host
d)  to identify a socket belonging to an application program

n What popular application uses port number 80?
a)  email
b)  bit torrent
c)  web server
d)  Skype

6

Transport Services

n Key transport level services
» reliable data delivery
» guaranteed data rate
» bounded end-to-end delay
» secure communication

n Different applications have different needs
» highly variable delay may be disruptive in a phone

conversation, but not be a problem for viewing web pages
» streaming HDTV requires a certain minimum data rate to

ensure high quality video – and no use for much higher rates
»  large file transfers should be “as fast as possible”, but can live

with whatever is available – elastic

7

Internet Transport Services

TCP service:
n  reliable transport between

sending and receiving process
n  flow control: sender won’t

overwhelm receiver
n  congestion control: throttle

sender when network
overloaded

n  does not provide: timing,
minimum throughput guarantee,
security

n  connection-oriented: setup
required between client and
server processes

UDP service:
n  unreliable data transfer between

sending and receiving process
n  does not provide: reliability,

flow control, congestion control,
timing, throughput guarantee,
security, or connection setup

8

No widely deployed
service offers:

»  guaranteed data rate
»  bounded end-to-end delay
»  secure communication

n  Secure communication is
realized through application-
level mechanisms

The Web and HTTP

n HTTP is an application layer protocol used to transfer
web pages between web servers and browsers

n Typical page includes some text along with references to
other pages and objects (images, applets, audio files,...)

n Pages and objects are identified by URL (universal resource locator)
» www.wustl.edu/~jst/cse/473/index.html

n To display web page
» browser requests page from server
» parses page and finds URLs to referenced objects
» requests objects
» displays web page text and objects in browser window

identifies server
(through its name) identifies file location

9

Simple Web Page Example
<html>
<head> <title>Sample Page</title> </head>
<h1>A Big Heading</h1>
Web pages are formatted using Hypertext Markup
Language (html),... Html uses <i>tags</i> that
appear in angle brackets. ...
<p>
The paragraph tag is used to insert a blank
line between paragraphs.
<h2>A Not So Big Heading</h2>
To create an ordered list, use the <i>ordered
list</i> tag (ol) with individual list items
separated from each other by <i>list item</i>
tags (li). Here's an example.

 first list item
 second list item ...
 You can reference other documents like
this <a href="
http://werbach.com/barebones/
barebones.html">html tutorial using the
hyperlink tag (a). and you can insert images
using the image tag (img).  
<p>
</body> </html> 10

HTTP Details

n HTTP runs over TCP
» web browser initiates connection to server
» browser and server exchange formatted text messages

n Request/response protocol with no server-side state
» basic requests: GET, HEAD, POST, PUT, DELETE

n GET Request

request line

header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

blankline
11

HTTP Response Message

n Sample status codes
»  200 OK
»  301 Moved Permanently
»  400 Bad Request
»  404 Not Found
»  505 HTTP Version Not Supported

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
data data data data data ...

status line

header lines

requested
content

status code

12

Exercises

You will need to refer to RFC 2616 to answer some of these
questions
1.  Explain the difference between HTML and HTTP
2.  Why does HTTP use TCP rather than UDP?
3.  What is the difference between a URI and a URL (and a URN)?
4.  What is the maximum length of a URI in an HTTP message?
5.  List five HTTP “methods”. What does the TRACE method do?
6.  What does the date in an HTTP response signify?

13

Persistent vs. Non-Persistent HTTP

n Non-persistent (1.0)
» browser opens separate TCP connection for every GET request
» server closes connection after response is delivered
» simpler to implement but less-than-ideal performance

n Persistent (1.1)
» connection is kept open so long as requests continue
» browser may send GET requests for multiple objects, without

waiting for responses to earlier requests
» allows all objects on a web page to be retrieved in one RTT
» signal by including “Connection: keep-alive” in GET header

n Performance comparison for page with N objects
» non-persistent: 2(N+1) RTTs plus transmission time

•  can improve using N parallel connections
» persistent: 3 RTTs plus transmission time 14

Web Applications and Cookies

n While HTTP remembers no per-client state, web apps
often need to maintain state
»  for example: to implement “shopping cart” in e-commerce apps

n A cookie is formatted text maintained by the browser at
the request of a web site
» typically maintained in a file on client’s computer
» may include information used by application to identify a user

•  such as key to a database entry with account data

n Cookie interaction
» server sets a cookie by including Set-Cookie header in response

to a request
» when sending a request to a server for which it has a stored

cookie, client includes Cookie: header and the associated text
15

Exercises

1. Consider a user with a 1 Mb/s DSL connection, requesting a web
page with 10 KB of text and links to five images, each of which is
100 Kbytes long. Assume that the user is in LA and the web server
is in NY, and the one way propagation delay is 25 ms.
»  how long does it take to download the web page + images using non-

persistent HTTP, with one connection open at a time?
»  how long does it take if the browser opens multiple connections?
»  how long does it take using persistent HTTP?
»  how do these answers change if the images are 1 MB long?

2. We noted that web servers do not maintain state information
about clients. Is this really true for servers that support persistent
html? Since such servers maintain a connection with a client, they
could reasonably maintain state for a client, while a connection
remains active. Could you use this to get rid of cookies?

16

Web Caching with Proxy Servers

n Client may configure
browser to use proxy
» all HTTP requests sent to proxy
»  if proxy has fresh copy of requested page,

it returns stored copy
»  if not, it sends its own GET request to retrieve page from “origin

server”, sends page to client and stores a copy

n Two main benefits
1.  reduces web traffic over access link
2.  reduces response time and load on origin servers

n What about pages that may change?
» origin server can place limit on time object can be cached
» proxy can issue conditional GET – “If-modified-since:” header

client
proxy
server

origin
server

17

Caching example

assumptions
n  avg. http get request rate from

users’ browsers = 15/sec, average
object size = 100,000 bits
»  Aggregate rate ~1.5 Mbps

n  Internet delay between ISP access
router and any origin server ~ 200
msecs

consequences
n  utilization on LAN ~ 15%
n  utilization on access link ~ 100%
n  total delay = Internet delay +

access delay + LAN delay
 ~ 200 msecs + max access queuing

 delay + milliseconds

origin
servers

public
 Internet

institutional
network

10 Mbps
LAN

1.5 Mbps
access link

18

Caching example
origin
servers

public
 Internet

institutional
network

10 Mbps
LAN

10 Mbps
access link

possible solution
n  increase bandwidth of access

link to, say, 10 Mbps

consequences
n  utilization on LAN ~ 15%
n  utilization on access link ~ 15%
n  Total delay = Internet delay +

access delay + LAN delay
 ~ 200 msecs + msecs + msecs
n  often a costly upgrade

19

Caching example
alternate solution
n  install proxy cache

consequences
n  suppose hit rate is 0.4

»  40% requests will be satisfied
almost immediately

»  60% requests satisfied by origin
server

n  utilization of access link reduced to
60%, resulting in negligible delays
(say 10 msec)

n  total avg delay =
.6*(remote access delay)+.4*(cache
delay) ~ .6*(210) msecs + msecs
 < 130 msecs

origin
servers

public
 Internet

institutional
network

10 Mbps
LAN

1.5 Mbps
access link

institutional
cache

20

Exercises

1. Suppose Wash. U. has an institutional web cache used by all
students and faculty and that during busy periods, the campus
generates about 100 http get requests per second, with an
average response size of 500 KB.
» What is the average resulting traffic on the university’s internet

connection if none of the requested web pages is in the cache?
» How does this change if the 95% of the requested pages can be

retrieved from the cache?
2. Assume the world’s web sites contain 100 TB of information, but

that 5% of the stored web pages account for 90% of the requests.
» How much disk space does a web cache need to ensure that roughly

no more than 10% of the requests it receives must be sent to the
origin server?

» What fraction would approximately get sent to the origin server if the
web cache could only store 500 GB? (Assume the top 5% pages are
all equally popular)

21

