
3. Introduction to the Transport
Layer and Socket Programming

n  Basic concepts
n  The UDP transport protocol
n  Building a UDP client and server in Java
n  The TCP transport protocol
n  Building a TCP client and server in Java

From Jon Turner – based partly on material from Kurose & Ross

1.2.3.4

Internet Essentials

n Routers forward packets among hosts
n Internet Protocol (IP) provides best-effort delivery of

datagram packets based on addresses in packet headers
n Processes use sockets as interface to network stack
n Transport protocols define port numbers used to identify

specific sockets

host

da sp dp sa

addresses ports

IP
address

p1 p2 ...

network
stack

socket

select socket
using port#

process

packet

router

2

Transport Services and Protocols
n Enable communication between application processes

running on different hosts
» most basic function is extending addressing beyond hosts
»  in Internet, port numbers are used for this purpose

n Transport protocols run in end systems
» although in Internet, some network components (e.g. NATs) do

examine and even modify transport fields

n Two principal transport protocols in Internet
» UDP – provides datagram interface, port numbers and some

limited error detection
» TCP – provides byte-stream interface, port numbers, reliable

data transport, flow control, congestion control
» neither provides bandwidth or delay guarantees

•  since the Internet (typically) does not
3

Transport Layer (De)Multiplexing
n Multiplexing, i.e., combining over shared resource

» Transport connections share the same IP address
» need mechanism to identify individual programs – port numbers
» running programs communicate through sockets and transport

protocol software maps port numbers to sockets
n Connectionless (de)multiplexing

» to send packet to a remote program, must know the port
number it is using, in addition to its host’s IP address

» when a UDP packet arrives at a host, the destination port # is
used to identify the socket that is to receive the packet
•  the destination port is the only information used to identify socket
•  so, packets from different remote hosts can be delivered to the

same socket
» the remote program uses the source IP address and port # of

received packet when sending a reply back to the sender
4

16 bits 16 bits

src port dst port

length checksum

application
data

UDP Details

n Port number are 16 bits long
n Length specifies number of bytes in

UDP “segment”, including header
n Checksum is used to detect errors in

UDP segment
» sender computes checksum by adding

16 bit chunks (keep adding beyond 16 bits)
•  On overflow, add carry bits back to 16 bits value
•  Take one’s complement (change 0/1 to 1/0)

» receiver checks for errors by re-computing
sum and comparing to value in packet

» since IP runs over multiple different link layer protocols, it
cannot rely on link layer for error detection
•  even though link layer routinely implements error detection

5

One’s Complement Arithmetic

n A: 0000 1000 1000 1001
 B: 1000 0000 0001 0001
 C: 1001 1111 0001 1111
n A+B= 1000 1000 1001 1010
 +C: 1001 1111 0001 1111
 10010 0111 1011 1001
 + 0001
 = 0010 0111 1011 1010

 = 1101 1000 0100 0101 (one’s complement)

Exercises

1. What services does TCP provide that UDP does not?
2. Name three services that neither UDP nor TCP provide.
3. Suppose a host is running two programs A and B that

both communicate over the internet using UDP. If the
socket for program A is mapped to port number 6789, is
it possible for the socket for program B to also be mapped
to port number 6789?

4. When a UDP server receives a packet from a client
program and replies to the client, how does it know where
to send the packet?

5. Assume a UDP payload that consists of the 6 bytes on the
previous slide. Can you change one bit without changing
the checksum? What about 2 bits? Can you generalize
this result?

7

Simple UDP Echo Server in Java

import java.io.*; import java.net.*;
public class UdpServer {

public static void main(String args[]) throws Exception {
// open datagram socket on port 9876
DatagramSocket sock = new DatagramSocket(9876);
// create two packets sharing a common buffer
byte[] buf = new byte[1000];
DatagramPacket inPkt = new DatagramPacket(buf, buf.length);
DatagramPacket outPkt = new DatagramPacket(buf, buf.length);
while (true) {

// wait for incoming packet
sock.receive(inPkt);
// set address, port and length fields of outPkt
// so as to return contents of inPkt to sender
outPkt.setAddress(inPkt.getAddress());
outPkt.setPort(inPkt.getPort());
outPkt.setLength(inPkt.getLength());
// and send it back
sock.send(outPkt);

} } }
8

UDP Echo Client

import java.io.*; import java.net.*;
public class UdpClient {

public static void main(String args[]) throws Exception {
// get server address and open socket
InetAddress serverAdr = InetAddress.getByName(args[0]);
DatagramSocket sock = new DatagramSocket();
// build packet addressed to server, then send it
byte[] outBuf = args[1].getBytes("US-ASCII");
DatagramPacket outPkt = new

DatagramPacket(outBuf,outBuf.length,serverAdr,9876);
sock.send(outPkt);
// create buffer and packet for reply, then receive it
byte[] inBuf = new byte[1000];
DatagramPacket inPkt = new DatagramPacket(inBuf,inBuf.length);
sock.receive(inPkt);
// print buffer contents and close socket
String reply = new String(inBuf,0,inPkt.getLength(),"US-ASCII");
System.out.println(reply);
sock.close();

} }
9

Recap of Classes/Methods Used

n DatagramSocket (defined in java.net)
» used to read/write packets
» opened by constructor, closed using close() method

n DatagramPacket (in java.net)
» defines packet with payload defined by array of bytes

•  in Java, a byte is not the same thing as a char
•  encode strings as bytes using String’s getBytes method with a

specified encoding
•  convert byte arrays to Strings using String constructor with

specified encoding
» address and port fields specify peer address/port
»  length field is # of bytes to send in packet, or # received

n InetAddress (in java.net)
» use static method getByName(addressString) to convert a

destination host’s name to its internet address 10

Exercises

n  In UdpEchoServer, two packet objects are used. Do you think this
is necessary? If so, explain why. If not, show how you can modify
the code to use just one packet object.

n  UdpEchoClient uses the US-ASCII method to encode Strings as
bytes. If you run it using the command

 java UdpEchoClient serverHostName “hi there”
how many bytes are carried in the payload of the UDP packet?
Suppose you modified the program to use UTF-16, in place of US-
ASCII, how many bytes would be carried in the UDP payload in
this case? Try it.

11

Key TCP Concepts

n To provide reliable communication, the TCP networking
software at both communicating hosts must cooperate
» requires information that must be maintained consistently at

both ends
» to allow the network software to initialize this information,

communicating processes must first “establish a connection”
n Two kinds of sockets in TCP

»  listening socket used by server to make itself available for
connection requests
•  any host in the internet can send a connection request to a

listening socket (assuming it knows the IP address and port#)
» connection socket used by a client-server pair to exchange data

•  identified by “4-tuple”: local address/port#, remote address/port#
•  server can have multiple connection sockets using same port#
•  typically, each connection socket handled by separate thread

12

TCP Connection Establishment

open Socket and connect

connection established

open socket and configure
as “listening” socket
accept (and wait)

connection socket opened
source address, port
associated with socket

now connected

13

TCP SYN segment

data segments

TCP SYN ACK

TCP Echo Server
import java.io.*; import java.net.*;
public class TcpServer {
public static void main(String args[]) throws Exception {

// create listen socket and buffer
ServerSocket listenSock = new ServerSocket(6789);
byte[] buf = new byte[1000];
while (true) {

// wait for connection request; create connection socket
Socket connSock = listenSock.accept();
// create buffered versions of socket's in/out streams
BufferedInputStream in = new BufferedInputStream(

 connSock.getInputStream());
BufferedOutputStream out = new BufferedOutputStream(

 connSock.getOutputStream());
while (true) { // read and echo until peer closes

int nbytes = in.read(buf, 0, buf.length);
if (nbytes < 0) break;
out.write(buf,0,nbytes); out.flush();

}
connSock.close();

} } } 14

TCP Echo Client

import java.io.*; import java.net.*;
public class TcpClient {

public static void main(String args[]) throws Exception {
// open socket and connect to server
Socket sock = new Socket(args[0], 6789);

// create buffered reader & writer for socket's in/out streams
BufferedReader in = new BufferedReader(new InputStreamReader(

 sock.getInputStream(),"US-ASCII"));
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(

 sock.getOutputStream(),"US-ASCII"));

// output second argument to server, adding a newline
// as delimiter; flush all data from buffer to network
out.write(args[1]); out.newLine(); out.flush();

// read data up to end of line and close connection
System.out.println(in.readLine());
sock.close();

} }

15

Additional Classes/Methods Used

n ServerSocket (in java.net)
» used to listen for incoming connection requests

n Socket (in java.net)
» used for connection sockets
» associated input and output streams for transferring bytes

n BufferedInputStream/BufferedOutputStream (in java.io)
» buffers bytes in user space for more efficient data transfers

n InputStreamReader/OutputStreamWriter (in java.io)
»  for converting between bytes and chars/Strings
» can use variety of encoding methods

n BufferedReader/BufferedWriter (in java.io)
» buffers chars in user space for more efficient transfers
» readLine() method simplifies parsing of input 16

TCP Provides a Byte Stream Interface

n Bytes that are written together may not be transferred
together, so don’t expect single read to get them all

n If receiver is slow to read bytes
» receiver’s socket buffer fills, causing it to flow-control sender
» when sender’s socket buffer fills, additional writes block,

suspending application program
» bytes are transferred as space becomes available at receiver 17

TCP

sender receiver

TCP

writes add
bytes to

socket buffer

packets formed
independently of

writes

reads take
bytes from

socket buffer

Formatting a Byte Stream

n Since no visible packet boundaries (as with datagrams),
sending program must format data to assist receiver

n For character data, common technique is to use newline
character (or CR,LF pair) as delimiter
» receiver reads complete lines, then parses contents of each line

n For binary data, simplest approach is fixed format
» receiver relies on pre-arranged format when reading data
» can send a variable length array by first sending a length field

•  receiver first reads length, then reads as many additional items as
specified by the length field

n Many other possibilities, but there must be some well-
defined format that receiver can depend on

18

Note: Network and Host Byte Orders
n Two common conventions for representing multi-byte

values in a computer’s memory
»  little-endian – low order byte comes first in memory

•  so 32 bit hex value 0xabcdef12 is stored 12, ef, cd, ab
» big-endian – high order byte comes first

n Internet protocols assume high-order byte sent first
» to ensure this, may need to reformat data before sending a

packet (and after receiving it)
» Java provides mechanisms to handle this automatically

•  DataInputStream/DataOutputStream (in java.io) for TCP sockets
declare by “wrapping” BufferedInputStream/OutputStream

 DataInputStream in = new DataInputStream( 
 new BufferedInputStream(connSock.getInputStream()));  
 use provided methods to write/read binary data
 int i = in.readInt(); float x; out.writeFloat(x);
•  ByteBuffers (in java.nio) for UDP sockets 19

TCP Segment Format

n Port numbers are 16 bits long
n Length specifies number of 32 bit

words in TCP header (typically 5)
n Flags include

» SYN and FIN bits used to setup and
teardown connections

n Checksum is used to detect
errors in TCP segment
» sender computes checksum by adding

16 bit chunks
•  on arithmetic overflow, sum is

incremented
» receiver re-computes sum and compares to value in packet

n Defer discussion of other fields

16 bits 16 bits

src port dst port

sequence #

acknowledgment #
hdr
leng - flags recv window

checksum urgent data

options

application
data

20

Exercises

1.  How many sockets does a UDP server need to communicate with
100 remote clients concurrently?
How many port numbers does it need?

2.  How many sockets does a TCP server need to communicate with
100 remote clients concurrently?
How many port numbers does it need?

3.  How does the network stack identify the socket to which an
incoming TCP packet is to be delivered?

21

