
Homework 2
Kernel SVM and Perceptron

CMU 10-701: Machine Learning (Fall 2014)
https://piazza.com/cmu/fall2014/1070115781/home

OUT: Sept 25, 2014
DUE: Oct 8, 11:59 PM

START HERE: Instructions

• Late days: The homework is due Wesnesday Oct 8th, at 11:59PM. You have five late days to use
throughout the semester, and may use at most three late days on any one assignment. Once the allowed
late days are used up, each additional day (or part of a day) will subtract 1 from the normalized score
for the assignment. View the full late days policy on Piazza.

• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought
about the problems on your own. It is also OK to get inspiration (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators and resources fully and completely (e.g., “Jane explained
to me what is asked in Question 3.4” or “I found an explanation of conditional independence on page
17 of Mitchell’s textbook”). Second, write up your solution independently: close the book and all of
your notes, and send collaborators out of the room, so that the solution comes directly from you and
you alone.

• Programming:

– Octave: You must write your code in Octave. Octave is a free scientific programming language,
with syntax identical to that of MATLAB. Installation instructions can be found on the Octave
website. (You can develop your code in MATLAB if you prefer, but you must test it in Octave
before submitting, or it may fail in the autograder.)

– Autograding: All programming problems are autograded using the CMU Autolab system. The
code which you write will be executed remotely against a suite of tests, and the results used to
automatically assign you a grade. To make sure your code executes correctly on our servers, you
should avoid using libraries which are not present in the basic Octave install.

• Submitting your work: All answers will be submitted electronically through the submission website:
https://autolab.cs.cmu.edu/10701-f14.

– Start by downloading the submission template. The template consists of directory with place-
holders for your writeup (“problem1.pdf”, “problem2.pdf”), and a single sub-directory for the
programming parts of the assignment. Do not modify the structure of these directories or rename
these files.

– IMPORTANT: When you download the template, you should confirm that the autograder is
functioning correctly by compressing and submitting the directory provided. This should result
in a grade of zero for all programming questions, and an unassigned grade (-) for the written
questions.

– Writeup: Replace the placeholders with your actual writeup. Make sure to keep the expected
file names (“problem1.pdf”), and to submit one PDF per problem. To make PDFs, we suggest
pdflatex, but just about anything (including handwritten answers) can be converted to PDF using
copier-scanners like the ones in the copier rooms of GHC.

– Code: For each programming sub-question you will be given a single function signature. You will
be asked to write a single Octave function which satisfies the signature. In the handout linked
above, the “code” folder contains stubs for each of the functions you need to complete.

– Putting it all together: Once you have provided your writeup and completed each of the
function stubs, compress the top level directory as a tar file and submit to Autolab online (URL

1

https://piazza.com/cmu/fall2014/1070115781/home
https://piazza.com/class/hxwaa1bxuze4xj?cid=10
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
https://autolab.cs.cmu.edu/10701-f14
https://autolab.cs.cmu.edu/10701-f14/attachments/view/232


above). You may submit your answers as many times as you like. You will receive instant
feedback on your autograded problems, and your writeups will be graded by the instructors once
the submission deadline has passed.

Problem 1: SVM decision boundaries [Zichao - 30pts]

Support Vector Machines are powerful tools for classifications. SVM can perform non-linear classification
using the kernel trick. In this question, you are to examine the decision boundaries of SVM with different
kernels.

1. Recall that the soft-margin primal SVM problem is

min
1

2
w ·w + C

n∑
i=1

ξi (1)

s.t.∀i = 1, · · · , n : (2)

ξi ≥ 0 (3)

(w · xi + b)yi − (1− ξi) ≥ 0. (4)

For hard-margin primal SVM, ξi = 0,∀i. We can get the kernel SVM by taking the dual of the primal
problem and then replace the product of xi · xj by k(xi,xj), where k(., .) can be any kernel function.

Figure 1 plots SVM decision boundaries resulting from using different kernels and/or different slack
penalties. In Figure 1, there are two classes of training data, with labels yi ∈ {−1, 1}, represented by
circles and squares respectively. The SOLID circles and squares represent the support vectors. Label
each plot in Figure 1 with the letter of the optimization problem below and explain WHY you pick
the figure for a given kernel. (Note that there are 6 plots, but only 5 problems, so one plot does not
match any of the problems.)

(a) A soft-margin linear SVM with C = 0.1. [4 pts]

(b) A soft-margin linear SVM with C = 10. [4 pts]

(c) A hard-margin kernel SVM with K(u,v) = u · v + (u · v)2. [4 pts]

(d) A hard-margin kernel SVM with K(u,v) = exp
(
− 1

4‖u− v‖2
)
. [4 pts]

(e) A hard-margin kernel SVM with K(u,v) = exp
(
−4‖u− v‖2

)
. [4 pts]

2. You are given a training dataset, as shown in Fig 2. Note that the training data comes from sensors
which can be error-prone, so you should avoid trusting any specific point too much. For this problem,
assume that we are training an SVM with a quadratic kernel.

(a) Where would the decision boundary be for very large values of C (i.e., C →∞)? Draw on figure
and justify your answer. [3 pts]

(b) For C ≈ 0, indicate in the figure where you would expect the decision boundary to be? Justify
your answer. [3 pts]

(c) Which os the two cases above would you expect to work better in the classification task? Why?
[4 pts]

2



1 2 3

4 5 6

Figure 1: Induced Decision Boundaries

0 2 4 6 8 10 12
0

2

4

6

8

10

12

 

 

Figure 2: Training dataset

3



Problem 2: Understanding the Likelihood Function, Bit by Bit
(Ben, 30 points)

You are receiving a random stream of 0 or 1 bits, and you would like to know the probability that the next
received bit is 1. This can be thought of as flipping a (possibly unfair) coin and finding the probablity of
the coin being heads.
Let

Hi =

{
1 if the ith bit received is 1
0 if the ith bit received is 0

Let P (Hi = 1) = pH . Then, P (Hi = 0) = 1 − pH . Let NH =
Nbits∑
i=1

Hi be the number of received 1s and

Nbits be the total number of bits received. We observe H1, . . . ,HNbits
.

1. (a) (1 point) Give the name of the distribution and list its parameters for the random variable Hi

(i.e., Hi ∼ Distribution(parameters)). Give the name of the distribution and list its parameters
for the random variable NH .

(b) Since we do not know the true parameter p∗H , we would like to estimate it from observed data.
One estimate is the maximum likelihood estimate (MLE). This maximizes the likelihood function
of pH given the data.

i. (1 point) Give the form of the likelihood function, L(H1, . . . ,HNbits
; pH). Use the symbols

NH and Nbits where appropriate.

ii. (2 points) Let Nbits = 3, and say we observed four different sequences of bits: 111, 110, 001,
000. Plot L(H1, . . . ,HNbits

; pH) (y-axis) vs. pH (x-axis) for each sequence on the same axes.
(You will have four curves on the same plot. Sample pH from 0 to 1 in 0.01 increments.) On
each curve, put a star at the pH that has the highest likelihood. These are the maximum
likelihood estimates. Do they make intuitive sense given the data? Why?
[For your convenience, you can use the given hw2 ques2 1 b ii.m as a starting script to make
the plot. Simply fill in the missing code where it instructs you. Include a figure of the plot
in your write-up. Do not include extra .m files in your homework submission.]

iii. (2 points) Using calculus, calculate the area under the curve for each sequence. You can check
the approximate correctness of these answers by summing up the curves in 2.1.b.ii. Is the
likelihood function a valid probability distribution over pH? Explain.

(c) (2 points) Now compute p̂H , the MLE, for any Nbits. Write out and label each step clearly,
providing movitation for the steps (e.g., why are you taking the derivative?). Just writing down
the MLE form will not be given full credit. You should only need to use Nbits, H1, . . . ,HNbits

,
NH , pH , and p̂H as symbols.

2. We now consider the case where we receive the stream of bits with additive noise (i.e., channel corrup-
tion). The noise model can be written:

Oi = Hi + εi

where i = 1, . . . , Nbits, Oi is the observed bit with noise, Hi is defined in the same manner as in 2.1,
and εi ∼ N (0, σ2), where σ2 is given.

(a) (3 points) Give the form of the likelihood function, L(O1, . . . , ONbits
; pH). Determine if the log of

this function is concave. Why is concavity important? (One way of checking for concavity is to
see if the second derivative is negative for all values of pH .)

(b) (3 points) As in 2.1.c, compute the MLE of pH , p̂H , for the likelihood function, L(O1, . . . , ONbits
; pH).

Write out the analytical form, if possible. Otherwise, describe how to obtain the MLE without a
closed form.

4



(c) (4 points) Let the true parameter p∗H = 0.6, σ2 = 0.1. Generate 4 datasets from the model with
different trial sizes (i.e., vary Nbits): {100, 500, 1000, 2500}. Plot logL(O1, . . . , ONbits

; pH) vs. pH
for each dataset on the same axes. For each curve, place a star at the pH with the maximum
log-likelihood. (There will be 4 curves on the same plot. Again, sample pH from 0 to 1 with 0.01
increments.) What happens when you increase σ2? [You can use the given hw2 ques2 2 c.m as a
starting script. Include the plot as a figure in your write-up.]

(d) (3 points) Let us define another estimator, p̄H , as the number of Oi greater than 0.5 divided by
Nbits. This estimator takes a threshold of the observed data, and is not the MLE. To compare p̂H
with p̄H , plot p̂H vs. trial size (the same trial sizes as in 2.2.c) and p̄H vs. trial size on the same
axes. (There will be two curves on the same plot.) Comment on which estimator does a better
job. What happens when you increase σ2? [You can use the given hw2 ques2 2 d.m as a starting
script. Include the plot as a figure in your write-up.]

3. Assume the same model in 2.2, Oi = Hi + εi, i = 1, . . . , Nbits, but now εi ∼ N (0, σ2
i ), where the

variance grows for each consecutively received bit.

(a) (3 points) Write out the form of the likelihood function L(O1, . . . , ONbits
; pH). Is the log-likelihood

function concave?

(b) (3 points) Repeat 2.2.c with the new model, where p∗H = 0.6 and σ2
i = i

Nbits
. Plot logL(O1, . . . , ONbits

; pH)

vs. pH for each trial size. (There will be 4 curves on the same plot.) [You can use the given
hw2 ques2 3 b.m as a starting script. Include the plot as a figure in your write-up.]

(c) (3 points) Repeat 2.2.d with the new model. Plot pH vs. trial size for both estimators. (There
will be two curves on the same plot.) Comment on the differences between p̂H and p̄H . [You can
use the given hw2 ques2 3 c.m as a starting script. Include the plot as a figure in your write-up.]

Problem 3: Kernels and Features [Adona; 35 pts + 5 Bonus]

In this question you will implement Perceptron Classification, and Kernel Perceptron Classification. Re-
member to follow the detailed coding and submission instructions at the top of this file!

• Data: All questions will use the following datastructures:

– XTrain ∈ Rn×f is a matrix of training data, where each row is a training point, and each column
is a feature.

– XTest ∈ Rm×f is a matrix of test data, where each row is a test point, and each column is a
feature.

– yTrain ∈ {−1,+1}n×1 is a vector of training labels

– yTest ∈ {−1,+1}m×1 is a (hidden) vector of test labels.

• SUBMISSION CHECKLIST

– Submission executes on our machines in less than 10 minutes.

– Submission is smaller than 15MB.

– Submission is a .tar file.

– Submission returns matrices of the exact dimension specified.

Perceptrons

1. Perceptron Weights [5 pts]
Complete the function pWeights(XTrain, yTrain, nIter) which takes as input the training data
XTrain, the training labels yTrain, and the number of iterations nIter (number of times the al-
gorithm goes through the entire dataset) and returns a f × 1 weight vector w. pWeights() should
implement the iterative perceptron weight learning algorithm described in class.

5



2. Perceptron Classifier [2pts]
Complete the function pClassify(XTest, w) which takes as input the test data, and the weight vector,
and returns a m× 1 vector of class predictions p ∈ {−1,+1}m.

Kernel Perceptrons

In this question you will implement the kernel perceptron classification algorithm.
At an abstract level kernel perceptrons work by projecting the features into a high dimensional feature

space, then doing normal perceptron learning in the high dimensional feature space. i.e. ∀x we replace x
with φ(x), then run perceptron learning using φ(x) as our features.

Unfortunately it is computationally infeasible to do this explicitly. Instead we work in the high dimen-
sional space implicitly using inner products. We note that given a data point φ(x) and a weight vector
w, we classify φ(x) by calculating 〈φ(x), w〉. Furthermore we know w is a linear combination of the points
φ(x1), ..., φ(xn) (i.e. w =

∑
i αiφ(xi) for some α1, ..., αn. Therefore 〈φ(x), w〉 =

∑
i αi〈φ(x), φ(xi)〉. There-

fore all we really need to do is calculate the inner products between points, and keep track of the α values.
Note that in this question we use a dth degree polynomial kernel with inner product 〈φ(xi), φ(xj)〉 =

〈xi, xj〉d.

1. Kernel Weights [10 pts]
Complete the function kpWeights(XTrain, yTrain, nIter, d) which takes as input the training data
XTrain, the training labels yTrain, the number of iterations to run for nIter, and the degree of the
polynomial kernel d. kpWeights() should output a n× 1 vector α, whose elements are the multipliers
for each example learned by the kernel perceptron algorithm. Note that the perceptron weight vector
w is implicitly represented through these α values.

2. Kernel Perceptron Classifier [8 pts]
Complete the function kpClassify(XTrain,XTest, α, d) which takes as input the training dataXTrain,
the test data XTest, the weight vector α, and the degree of the polynomical kernel d. kpClassify()
should output a m× 1 vector of class predictions p ∈ {−1,+1}m.

CHALLENGE: SPAM Feature Engineering [10 pts + 5 bonus]

This is a challenge question, and is significantly more difficult than previous questions. Furthermore this
question is a Competition! There is a class leaderboard for this question on the Autolab website. The 10
basic points will be awarded to all students passing a basic accuracy threshold. Bonus points will be awarded
to students who have top 10 classification accuracy on the class leaderboard.

• In this question you will engineer a list of features for SPAM email classification. The idea is to convert
an email into a list of real numbers, which can then be used train a machine learning classification
algorithm. The performance of the resulting classifier will depend Heavily on how good your features
are, so select them carefully!

• Specifically your task is to complete the function mail2Feat(Mail) which converts a set of emails into
a matrix of real numbers. Suppose we have e emails, where the ith email has wi words. Mail is a
e× 1 cell array of emails, each of which is wi× 1 cell array of words. You can produce as many output
features as you like, the only caveat is that all emails must have the same set of features. If you decide
to output f features, then mail2Feat() should output a e× f matrix of real numbers.

• In addition to the mail2Feat() function you may also use the dictionary.csv file. This file allows you
to include abitrary data (such as a dictionary of words) with your submission. Use this file to store
and retrieve preprocessed results in your submission. An example of how to use this file is included in
the mail2Feat.m template file.

• Your will be graded based on how well your features support classification. Specifically yourmail2Feat()
function will be used to convert two hidden sets of emails into features. We will then train a perceptron
using one set of emails, and test the performance of the perceptron on another. Your grade will be
directly proportional to the classification accuracy obtained.

6



HINTS: I have included code in the mail2Feat.m template file which demonstrates an incredibly basic
feature map. This code simply takes a few words and counts how many times each word appears in each
email. These counts are the features. For more advanced (and successful) feature maps, TF-IDF is a good
place to start. (http://en.wikipedia.org/wiki/Tf%E2%80%93idf).

7

http://en.wikipedia.org/wiki/Tf%E2%80%93idf

