
Homework 2 Solutions
Kernel SVM and Perceptron

CMU 10-701: Machine Learning (Fall 2014)
https://piazza.com/cmu/fall2014/1070115781/home

OUT: Sept 25, 2014
DUE: Oct 8, 11:59 PM

Problem 1: SVM decision boundaries [Zichao - 30pts]

Support Vector Machines are powerful tools for classifications. SVM can perform non-linear classification
using the kernel trick. In this question, you are to examine the decision boundaries of SVM with different
kernels.

1. Recall that the soft-margin primal SVM problem is

min
1

2
w ·w + C

n∑
i=1

ξi (1)

s.t.∀i = 1, · · · , n : (2)

ξi ≥ 0 (3)

(w · xi + b)yi − (1− ξi) ≥ 0. (4)

For hard-margin primal SVM, ξi = 0,∀i. We can get the kernel SVM by taking the dual of the primal
problem and then replace the product of xi · xj by k(xi,xj), where k(., .) can be any kernel function.

Figure 1 plots SVM decision boundaries resulting from using different kernels and/or different slack
penalties. In Figure 1, there are two classes of training data, with labels yi ∈ {−1, 1}, represented by
circles and squares respectively. The SOLID circles and squares represent the support vectors. Label
each plot in Figure 1 with the letter of the optimization problem below and explain WHY you pick
the figure for a given kernel. (Note that there are 6 plots, but only 5 problems, so one plot does not
match any of the problems.)

2 pts for choice and 2pts for reason

(a) A soft-margin linear SVM with C = 0.1. [4 pts]

Solution: Corresponds to Fig. 1.4. The decision boundary of linear SVM is linear. In compari-
son with Fig. 1.3(problem b), the line does not separate the two classes strictly, which corresponds
to the case C is small and more errors are allowed.

(b) A soft-margin linear SVM with C = 10. [4 pts]

Solution: Corresponds to Fig. 1.3. The decision boundary of linear SVM is linear. In com-
parison with Fig. 1.4(problem a), the line separates two classes strictly, which corresponds to the
case C is big.

(c) A hard-margin kernel SVM with K(u,v) = u · v + (u · v)2. [4 pts]

Solution: Corresponds to Fig. 1.5. The decision function of quadratic kernel is given by
f(x) =

∑
i αi(xi · x+ (xi · x)2) + b. Hence the decision boundary is f(x) = 0. Since f(x) is

second order function of x, the curve can be ellipse or hyperbolic curve. Fig. 5 is hyperbolic
curve.

(d) A hard-margin kernel SVM with K(u,v) = exp
(
− 1

4∥u− v∥2
)
. [4 pts]

Solution: Corresponds to Fig. 1.1. We can write out the decision function as f(x) =∑
i αi exp

(
−γ∥xi − x∥2

)
+ b. If γ is large, then the kernel value is quite small even if the distance
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between the x and xi is small. This makes the classification hard with few supporting vectors. If
Fig. 1.1 corresponds to the case γ is large (=4), then it is hard to classify many circle point in
the middle in Fig. 1.1. Hence, Fig. 1.1 corresponds to γ = 1

4 .

(e) A hard-margin kernel SVM with K(u,v) = exp
(
−4∥u− v∥2

)
. [4 pts]

Solution: Corresponds to Fig. 1.6. Using similar argument, we can conclude that if γ is large,
there are more support vectors.

2. You are given a training dataset, as shown in Fig 2. Note that the training data comes from sensors
which can be error-prone, so you should avoid trusting any specific point too much. For this problem,
assume that we are training an SVM with a quadratic kernel.

(a) Where would the decision boundary be for very large values of C (i.e., C → ∞)? Draw on figure
and justify your answer. [3 pts]

Solution: The decision boundary is the curve (a) in Fig. 2 When C → ∞, it becomes hard
margin SVM, hence the decision boundary must separate the two class. Given it’s a quadratic
kernel (with the analysis from 1.1.c), we can conclude the decision boundary is like curve (a) in
Fig. 2.

(b) For C ≈ 0, indicate in the figure where you would expect the decision boundary to be? Justify
your answer. [3 pts]

Solution: The decision boundary is the curve (b) in Fig. 2 When C → 0, the decision boundary
tends to find the max margin between the two classes regardless of several noises. Any linear or
second order curve that appears in the middle is okay for this problem.

(c) Which of the two cases above would you expect to work better in the classification task? Why?
[4 pts]

Solution: The second decision boundary tends to work better. We can see that the two circle
points near the square points are noises. Put C → ∞ will make the classification decided by the
noises, which doesn’t represent the real decision boundary.

Problem 2: Understanding the Likelihood Function, Bit by Bit
(Ben, 30 points)

You are receiving a random stream of 0 or 1 bits, and you would like to know the probability that the next
received bit is 1. This can be thought of as flipping a (possibly unfair) coin and finding the probablity of
the coin being heads.
Let

Hi =

{
1 if the ith bit received is 1
0 if the ith bit received is 0

Let P (Hi = 1) = pH . Then, P (Hi = 0) = 1 − pH . Let NH =
Nbits∑
i=1

Hi be the number of received 1s and

Nbits be the total number of bits received. We observe H1, . . . , HNbits
.

1. (a) (1 point) Give the name of the distribution and list its parameters for the random variable Hi

(i.e., Hi ∼ Distribution(parameters)). Give the name of the distribution and list its parameters
for the random variable NH .

Hi ∼ Bernoulli(pH). (+0.5)
NH ∼ Binomial(Nbits, pH). (+0.5)
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Figure 1: Induced Decision Boundaries
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Figure 2: Training dataset

(b) Since we do not know the true parameter p∗H , we would like to estimate it from observed data.
One estimate is the maximum likelihood estimate (MLE). This maximizes the likelihood function
of pH given the data.
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i. (1 point) Give the form of the likelihood function, L(H1, . . . , HNbits
; pH). Use the symbols

NH and Nbits where appropriate.

L(H1, . . . , HNbits
; pH) = P (H1, . . . , HNbits

; pH)

=
Nbits∏
i=1

P (Hi; pH); since the bits are independent

=
Nbits∏
i=1

pH
Hi(1− pH)1−Hi ; if Hi = 1, P (Hi; pH) = pH , if Hi = 0, P (Hi; pH) = 1− pH

= pH

Nbits∑
i=1

Hi

(1− pH)

Nbits∑
i=1

(1−Hi)
= pH

NH (1− pH)Nbits−NH

L(H1, . . . , HNbits
; pH) = pH

NH (1− pH)Nbits−NH (+1)

ii. (2 points) Let Nbits = 3, and say we observed four different sequences of bits: 111, 110, 001,
000. Plot L(H1, . . . , HNbits

; pH) (y-axis) vs. pH (x-axis) for each sequence on the same axes.
(You will have four curves on the same plot. Sample pH from 0 to 1 in 0.01 increments.) On
each curve, put a star at the pH that has the highest likelihood. These are the maximum
likelihood estimates. Do they make intuitive sense given the data? Why?
[For your convenience, you can use the given hw2 ques2 1 b ii.m as a starting script to make
the plot. Simply fill in the missing code where it instructs you. Include a figure of the plot
in your write-up. Do not include extra .m files in your homework submission.]
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2.1.b.ii: blue: 111, green: 110, red: 001, black: 000

Figure 3: Question 2.1.b.ii

(+1.5 for Figure 3)
For 111, p̂H = 1, because we’ve only seen 1s. p̂H is the MLE. For 000, p̂H = 0, because
we’ve only seen 0s. For 110, p̂H = 2

3 , since we’ve seen two 1s and 0; for 001, we have p̂H = 1
3 .

These makes sense because the best information we have is the number of 1s seen out of Nbits.
(+0.5)

iii. (2 points) Using calculus, calculate the area under the curve for each sequence. You can check
the approximate correctness of these answers by summing up the curves in 2.1.b.ii. Is the
likelihood function a valid probability distribution over pH? Explain.
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For 111:
1∫
0

pH
3dpH = pH

4

4 |10 = 1
4

For 110:
1∫
0

pH
2(1− pH)dpH =

1∫
0

pH
2 − pH

3dpH = pH
3

3 − pH
4

4 |10 = 1
3 − 1

4 = 1
12

For 001:
1∫
0

(1−pH)2pHdpH =
1∫
0

(1−2pH+pH
2)pHdpH =

1∫
0

pH−2pH
2+pH

3dpH = pH
2

2 − 2
3pH

3+ 1
4pH

4|10

= 1
2 − 2

3 + 1
4 − 0 = 3

4 − 2
3 = 1

12

For 000:
1∫
0

(1− pH)3dpH = (1−pH)4

4 (−1)|10 = − (1−1)4

4 − −(1−0)4

4 = 0 + 1
4 = 1

4 (+1)

No, the likelihood function is not a valid probability distribution (otherwise, all these areas
should sum to 1). This is because we fix the data (H1, . . . , HNbits

) and vary the parameter
pH . Note that it is called the likelihood function and not distribution. If pH was fixed and we
instead integrated over the random variables representing the data, the likelihood function
would sum to 1 (i.e., this is the actual probability distribution of the data). (+1)

(c) (2 points) Now compute p̂H , the MLE, for any Nbits. Write out and label each step clearly, pro-
viding movitation for the steps (e.g., why are you taking the derivative?). Just writing down the
MLE form will not be given full credit. You should only need to use Nbits, H1, . . . ,HNbits

, NH ,
pH , and p̂H as symbols.

p̂H = argmax
pH

L(H1, . . . , HNbits
; pH)

= argmax
pH

pH
NH (1− pH)Nbits−NH (+0.5)

To find the maximum, find where the function L has 0 slope (we know L is concave). This is
equivalent to taking the derivative and setting it to 0. (+0.5)

dL
dpH

= d
dpH

[pH
NH (1− pH)Nbits−NH ] — Use the chain rule.

= pH
NH (Nbits −NH)(1 − pH)Nbits−NH−1(−1) +NHpH

NH−1(1 − pH)Nbits−NH = 0 — setting the
derivative to 0.
⇒ (Nbits −NH)pH

NH (1− pH)Nbits−NH (1− pH)−1 = NHpH
NH (1− pH)Nbits−NHp−1

H

⇒ pH(Nbits −NH) = (1− pH)NH

⇒ pHNbits = NH ⇒ pH = NH

Nbits

The maximum of L is when pH = NH

Nbits
, so

p̂H = NH

Nbits
(+0.5 for work, +0.5 for answer)

2. We now consider the case where we receive the stream of bits with additive noise (i.e., channel corrup-
tion). The noise model can be written:

Oi = Hi + ϵi

where i = 1, . . . , Nbits, Oi is the observed bit with noise, Hi is defined in the same manner as in 2.1,
and ϵi ∼ N (0, σ2), where σ2 is given.

(a) (3 points) Give the form of the likelihood function, L(O1, . . . , ONbits
; pH). Determine if the log of
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this function is concave. Why is concavity important? (One way of checking for concavity is to
see if the second derivative is negative for all values of pH .)

L(O1, . . . , ONbits
; pH) = P (O1, . . . , ONbits

; pH)

=
Nbits∏
i=1

P (Oi; pH) =
Nbits∏
i=1

1∑
t=0

P (Oi,Hi = t; pH) — We are expanding to include Hi’s with marginal-

ization. Thus, we’ll get to treat the Hi’s as “known” to capture the ϵi’s.

=
Nbits∏
i=1

1∑
t=0

P (Oi | Hi = t; pH)P (Hi = t; pH) — Now making use of conditional probability.

Note when Hi = 0, then Oi ∼ N (0, σ2) and
when Hi = 1, then Oi − 1 ∼ N (0, σ2).

=
Nbits∏
i=1

[N (Oi; 0, σ
2)(1− pH) +N (Oi − 1;O, σ2)pH ]

=
Nbits∏
i=1

[
N (Oi; 0, σ

2) +
(
N (Oi − 1; 0, σ2)−N (Oi; 0, σ

2)
)
pH

]
So L(O1, . . . , ONbits

; pH) =
Nbits∏
i=1

[
N (Oi; 0, σ

2) +
(
N (Oi − 1; 0, σ2)−N (Oi; 0, σ

2)
)
pH

]
(+0.5 for the work, +0.5 for the answer)

Let αi = N (Oi; 0, σ
2) and βi = N (Oi − 1; 0, σ2), since these are just constants, given from

the data.

logL(O1, . . . , ONbits
; pH) =

Nbits∑
i=1

log(αi + (βi − αi)pH)

d
dpH

logL =
Nbits∑
i=1

βi−αi

αi+(βi−αi)pH

d2

dpH
2 logL =

Nbits∑
i=1

(αi+(βi−αi)pH)0−(βi−αi)(βi−αi)
(αi+(βi−αi)pH)2 =

Nbits∑
i=1

−(βi−αi)
2

(αi+(βi−αi)pH)2

(+1 for the work, +0.5 for the answer)

The second derivative of logL with respect to pH is always negative. Thus, logL is a con-
cave function. Concavity is important because if we cannot find a closed form solution for the
MLE, we can rely on fast optimization methods that are guaranteed to find the maximum logL
at a global optimum (and not get stuck in local minima).
(+0.5)

(b) (3 points) As in 2.1.c, compute the MLE of pH , p̂H , for the likelihood function, L(O1, . . . , ONbits
; pH).

Write out the analytical form, if possible. Otherwise, describe how to obtain the MLE without a
closed form.

Setting the derivative ( d
dpH

L), calculated in 2.2.a, to zero cannot be solved analytically (pH
is entangled on the dependence of each Oi). However, in 2.2.a we found that the log-likelihood
function is concave. Thus, we can use an optimaization method, like gradient descent, to solve
for the pH that produces the maximum log-likelihood.
(+1 for why we can’t solve analytically, +1 for concavity, +1 for optimization method)

(c) (4 points) Let the true parameter p∗H = 0.6, σ2 = 0.1. Generate 5 datasets from the model with
different trial sizes (i.e., vary Nbits): {100, 500, 1000, 2500}. Plot logL(O1, . . . , ONbits

; pH) vs. pH
for each dataset on the same axes. For each curve, place a star at the pH with the maximum
log-likelihood. (There will be 4 curves on the same plot. Again, sample pH from 0 to 1 with 0.01
increments.) What happens when you increase σ2? [You can use the given hw2 ques2 2 c.m as a
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starting script. Include the plot as a figure in your write-up.]
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2.2.c: blue: 100 trials, green: 500, red: 1000, black: 2500

Figure 4: Question 2.c

As you increase σ2, the MLE’s performance would become worse overall. Also, an MLE based
on smaller trial sizes would perform worse than an MLE based on large trial sizes (the more
data, the better the estimator). In the limit as σ2 becomes unimaginably large, the data gives no
information about the underlying pH , and the MLE (or any estimator) will perform poorly.
(+2 for the plot, +2 for the explanation)

(d) (3 points) Let us define another estimator, p̄H , as the number of Oi greater than 0.5 divided by
Nbits. This estimator takes a threshold of the observed data, and is not the MLE. To compare p̂H
with p̄H , plot p̂H vs. trial size (the same trial sizes as in 2.2.c) and p̄H vs. trial size on the same
axes. (There will be two curves on the same plot.) Comment on which estimator does a better
job. What happens when you increase σ2? [You can use the given hw2 ques2 2 d.m as a starting
script. Include the plot as a figure in your write-up.]

Both estimators do a fairly good job, especially at high trial sizes (2,500 trials). When σ2 in-
creases modestly (∼1), both estimators perform poorly for small trial sizes. However, the MLE
will perform much better than p̄H for large trial sizes. This is because the MLE is much better
at accounting for outliers (i.e., Oi with a large noise contribution) than p̄H .
(+2 for the plot, +1 for the explanation)

3. Assume the same model in 2.2, Oi = Hi + ϵi, i = 1, . . . , Nbits, but now ϵi ∼ N (0, σ2
i ), where the

variance grows for each consecutively received bit.

(a) (3 points) Write out the form of the likelihood function L(O1, . . . , ONbits
; pH). Is the log-likelihood

function concave?

The likelihood function takes the exact same form as 2.2.a, except to change σ2 to σ2
i .
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2.2.d: blue: p−H−hat, green: p−H−bar

Figure 5: Question 2.2.d

So L(O1, . . . , ONbits
; pH) =

Nbits∏
i=1

[
N (Oi; 0, σ

2
i ) +

(
N (Oi − 1; 0, σ2

i )−N (Oi; 0, σ
2
i )
)
pH

]
Since the double derivative also remains the same (only the αs and the βs would change), this
function is still concave.
(+2 for the likelihood, +1 for concavity)

(b) (3 points) Repeat 2.2.c with the new model, where p∗H = 0.6 and σ2
i = i

Nbits
. Plot the logL(O1, . . . , ONbits

; pH)

vs. pH for each trial size. (There will be 4 curves on the same plot.) [You can use the given
hw2 ques2 3 b.m as a starting script. Include the plot as a figure in your write-up.]
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2.3.b: blue: 100 trials, green: 500, red: 1000, black: 2500

Figure 6: Question 3.b
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(+3 for the plot)

(c) (3 points) Repeat 2.2.d with the new model. Plot pH vs. trial size for both estimators. (There
will be two curves on the same plot.) Comment on the differences between p̂H and p̄H . [You can
use the given hw2 ques2 3 c.m as a starting script. Include the plot as a figure in your write-up.]
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2.3.c: blue: p−H−hat, green: p−H−bar

Figure 7: Question 3.c

p̂H is less biased than p̄H for the incrementally-increasing variance. This is because p̄H equally
weights every observation, while p̂H is flexible enough to rely heavily on the first trials and all
but ignore the last trials (which have high variance).
(+2 for the plot, +1 for the explanation)
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