
Homework 3
Regression, Gaussian processes, and Boosting

CMU 10-701: Machine Learning (Fall 2014)
https://piazza.com/cmu/fall2014/1070115781/home

OUT: Oct 31, 2014
DUE: Nov 12, 11:59 PM

START HERE: Instructions

• Late days: The homework is due Wesnesday Nov 12th, at 11:59PM. You have five late days to use
throughout the semester, and may use at most three late days on any one assignment. Once the allowed
late days are used up, each additional day (or part of a day) will subtract 1 from the normalized score
for the assignment. View the full late days policy on Piazza.

• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought
about the problems on your own. It is also OK to get inspiration (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators and resources fully and completely (e.g., “Jane explained
to me what is asked in Question 3.4” or “I found an explanation of conditional independence on page
17 of Mitchell’s textbook”). Second, write up your solution independently: close the book and all of
your notes, and send collaborators out of the room, so that the solution comes directly from you and
you alone.

• Programming:

– Octave: You must write your code in Octave. Octave is a free scientific programming language,
with syntax identical to that of MATLAB. Installation instructions can be found on the Octave
website. (You can develop your code in MATLAB if you prefer, but you must test it in Octave
before submitting, or it may fail in the autograder.)

– Autograding: All programming problems are autograded using the CMU Autolab system. The
code which you write will be executed remotely against a suite of tests, and the results used to
automatically assign you a grade. To make sure your code executes correctly on our servers, you
should avoid using libraries which are not present in the basic Octave install.

• Submitting your work: All answers will be submitted electronically through the submission website:
https://autolab.cs.cmu.edu/10701-f14.

– Start by downloading the submission template. The template consists of directory with place-
holders for your writeup (“problem1.pdf”, “problem2.pdf”), and a single sub-directory for the
programming parts of the assignment. Do not modify the structure of these directories or rename
these files.

– IMPORTANT: When you download the template, you should confirm that the autograder is
functioning correctly by compressing and submitting the directory provided. This should result
in a grade of zero for all programming questions, and an unassigned grade (-) for the written
questions.

– Writeup: Replace the placeholders with your actual writeup. Make sure to keep the expected
file names (“problem1.pdf”), and to submit one PDF per problem. To make PDFs, we suggest
pdflatex, but just about anything (including handwritten answers) can be converted to PDF using
copier-scanners like the ones in the copier rooms of GHC.

– Code: For each programming sub-question you will be given a single function signature. You will
be asked to write a single Octave function which satisfies the signature. In the handout linked
above, the “code” folder contains stubs for each of the functions you need to complete.

– Putting it all together: Once you have provided your writeup and completed each of the
function stubs, compress the top level directory as a tar file and submit to Autolab online (URL

1

https://piazza.com/cmu/fall2014/1070115781/home
https://piazza.com/class/hxwaa1bxuze4xj?cid=10
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
https://autolab.cs.cmu.edu/10701-f14
https://autolab.cs.cmu.edu/10701-f14/attachments/view/253

above). You may submit your answers as many times as you like. You will receive instant
feedback on your autograded problems, and your writeups will be graded by the instructors once
the submission deadline has passed.

Problem 1: Gaussian processes [Abu - 40 pts]

Background: The goal of this problem is to provide a better intuition and understanding about Gaussian
processes and regression. First, we will lay out some notation. Let X = {x1, x2, . . . , xn} be a collection of n
points where each xi ∈ R (we assume the points are one-dimensional in this problem for simplicity, but it is
straightforward to extend this to multiple dimensions). If m : R 7→ R is a function, then we denote m(X) as
the vector where the ith element is given by m(xi). If X ′ = {x′

1, . . . , x
′
n} is another collection of points in

R, and k : R×R 7→ R is a function that takes two arguments, then we denote k(X,X ′) as the matrix where
the element at position (i, j) is given by k(xi, x

′
j). Intuitively, you can think of k as a kernel function.

The Gaussian process (GP) is a distribution over functions. It is fully characterized by two parameters: a
mean function m : R 7→ R, and a covariance function k : R×R 7→ R. If a function f is distributed according
to a GP, we write:

f ∼ GP(m, k).

The GP is defined such that for any finite collection of points X = {x1, . . . , xn}, the function evaluated at
those points is distributed according to a multivariate normal:

f(X) ∼ N (m(X), k(X,X)).

The following is a non-exhaustive list of example covariance functions:

• linear: k(x, x′) = x · x′

• polynomial: k(x, x′) = (x · x′)d

• squared exponential: k(x, x′) = exp
{
− 1

2λ2 (x− x′)2
}

• exponential: k(x, x′) = exp
{
− 1

λ |x− x′|
}

• periodic: k(x, x′) = exp
{
− 2

λ2 sin
(
1
2 |x− x′|

)2}
• rational quadratic: k(x, x′) = (1 + (x− x′)2)−α

Model: For this problem, we will work with the following regression model:

f ∼ GP(0, k),

yi ∼ N (f(xi), σ
2) i.i.d. for i = 1, . . . , n.

In words, the function f is drawn from a GP prior with a zero mean function and covariance function k.
The output points yi are set to f(xi) plus Gaussian noise with variance σ2. Let X = {x1, . . . , xn} and
Y = {y1, . . . , yn}. By the definition of the GP, we can re-write this as:

f(X) ∼ N (0, k(X,X)), (1)

Y ∼ N (f(X), σ2I). (2)

a. [9 pts] Here, we will visualize the samples from a GP. Suppose we want to plot the function from x =
−10 to 10. To plot any function in code, we can discretize the x-axis {−10,−9.98,−9.96, . . . , 9.98, 10}
and compute the function at every point. Let this discretized sequence of points be X. We can compute
f(X) and Y by sampling from equations (1) and (2). You can use the function mvnrnd in Matlab or
multivariate normal in NumPy. However, you are free to use any programming language. Add
your code to the tar file for ALL parts to this question. Otherwise, you will not receive
full credit.

Select three covariance functions, such as from the list given above. In part a., you will create a figure
for each covariance function, for a total of three figures, using the following steps:

2

http://www.mathworks.com/help/stats/mvnrnd.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.multivariate_normal.html

i. For each covariance function, generate three samples of f(X) and plot them in a single figure,
where X = {−10,−9.98,−9.96, . . . , 9.98, 10}. You should have a total of nine curves, three in
each figure.

ii. In each figure, plot the mean function (zero in this case).

iii. The point-wise variance Var[f(x)] is the variance of f(x) at a single point x. By the definition of
the GP, the function evaluated at a single point f(x) is a univariate normal, with mean m(x) and
covariance k(x, x). For a sequence of points X = {x1, . . . , xn}, the point-wise variance is given by
k(x1, x1), . . . , k(xn, xn), which is identical to the diagonal of the matrix k(X,X).

In each figure, draw a confidence band: Lightly-shade the regions around the mean function ±1
standard deviation, computed from the point-wise variance of f(X). Do not estimate the
standard deviation empirically from your samples. Use the true point-wise standard deviation.
See Matlab function fill and matplotlib’s fill between. Your submission for a. should have
three figures (and no more), each with three functions, a mean function, and a confidence band.

b. [4 pts] Select one covariance function. Now, sample and plot Y for three different values of the
Gaussian noise parameter σ2. Describe the relationship between the noise parameter and the outputs
Y .

c. [9 pts] In a. and b., you visualized the prior. Now, we want to fit the model to observed data and
visualize the posterior. To do so, we need to derive a useful result about the multivariate normal
distribution.

Let x be a vector of length n that is distributed according to a multivariate normal with mean µ ∈ Rn

and covariance matrix Σ ∈ Rn×n. We can subdivide x into two subvectors, x1 ∈ Rk and x2 ∈ Rn−k,
and re-write x ∼ N (µ,Σ) in the following form:[

x1

x2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
,

where µ1 is the subvector of µ containing the first k elements, µ2 is the subvector of µ containing the
last n−k elements, Σ11 is the top-left k×k submatrix of Σ, Σ12 is the top-right k× (n−k) submatrix
of Σ, Σ21 is the bottom-left (n− k)× k submatrix of Σ, and Σ22 is the bottom-right (n− k)× (n− k)
submatrix of Σ. Derive the conditional distribution p(x1|x2).

Hint: Write out the joint probability p(x1|x2) ∝ p(x1, x2).

d. [4 pts] Suppose we observe the following five points: (0.5,−1), (1, 1), (2, 3), (2.5, 1.5), and (3, 0).
Thus, we let X∗ = {0.5, 1, 2, 2.5, 3} and Y∗ = {−1, 1, 3, 1.5, 0}. These can be appended to X and Y in
equations (1) and (2) to obtain:[

f(X)
f(X∗)

]
∼ N

(
0,

[
k(X,X) k(X,X∗)
k(X∗, X) k(X∗, X∗)

])
,[

Y
Y∗

]
∼ N

([
f(X)
f(X∗)

]
, σ2I

)
.

Since Y∗ = f(X∗) + ϵ where ϵ ∼ N (0, σ2I), we can write:[
f(X)
Y∗

]
∼ N

(
0,

[
k(X,X) k(X,X∗)
k(X∗, X) k(X∗, X∗) + σ2I

])
,

Use your result from c. to show that the distribution p(f(X)|Y∗) is given by:

f(X)|Y∗ ∼ N (k(X,X∗)(k(X∗, X∗) + σ2I)−1Y∗, (3)

k(X,X)− k(X,X∗)(k(X∗, X∗) + σ2I)−1k(X∗, X)).

3

http://www.mathworks.com/help/matlab/ref/fill.html
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.fill_between

e. [9 pts] Repeat the steps in a., except your functions should be sampled from p(f(X)|Y∗). Add
the training points to your figures. Here, the point-wise variance is given by the diagonal of the
covariance matrix in equation (3). Implementation tip: In almost all scenarios, you do not need to
directly compute the inverse of a matrix. It is much more efficient and numerically stable to use
Matlab’s mldivide, linsolve, or SciPy’s linalg.solve.

f. [5 pts] Select the squared exponential covariance function. Sample and plot f(X)|Y∗ for three
different values of the width parameter λ2, along with both the mean function and confidence band.
You should have three figures for this subproblem. How does this parameter affect bias in this model?
How does it affect variance?

Problem 2: Regression [Zichao - 30pts]

2.1 Why Lasso Works

Lasso is a form of regularized linear regression, where the L1 norm of the parameter vector is penalized. It is
used in an attempt to get a sparse parameter vector where features of little “importance” are assigned zero
weight. But why does lasso encourage sparse parameters? For this question, you are going to examine this.

Let X denotes an n×d matrix where rows are training points, y denotes an n×1 vector of corresponding
output values, β denotes a d × 1 parameter vector and β⋆ denotes the optimal parameter vector. To make
the analysis easier we will consider the special case where the training data is whitened (i.e., X⊤X = I). For
lasso regression, the optimal parameter vector is given by

β⋆ = argmin
β

1

2
||y −Xβ||2 + λ∥β∥1,

where λ > 0.

1. [3 pts] Show that whitening the training data nicely decouples the features, making β⋆
i determined by

the ith feature and the output regardless of other features. To show this, write Jλ(β) in the form

Jλ(β) = g(y) +
d∑

i=1

f(X.i, y, βi, λ), (4)

where X.i is the ith column of X.

2. [3 pts] Assume that β∗
i > 0, what is the value of β∗

i in this case?

3. [3 pts] Assume that β∗
i < 0, what is the value of β∗

i in this case?

4. [3 pts] From 2 and 3, what is the condition for β∗
i to be 0? How can you interpret that condition?

5. [3pt]Now consider ridge regression where the regularization term is replaced by 1
2λ||β||

2
2. What is the

condition for β∗
i = 0? How does it differ from the condition you obtained in 4.

2.2 Bayesian regression and Gaussian process

In this part, we are going to examine the relationship between Bayesian regression and Gaussian process.
Let the input for training point i be xi which is a d × 1 vector, we introduce a function ϕ(x) which maps
a d-dimensional input vector x into a D dimensional features space. Let Φ(X), which is D × n, be the
aggregation of columns ϕ(x) for all training points. Now the regression model is

f(x) = ϕ(x)⊤w, (5)

where the wight vector w has length D. We want to use Bayesian approach to do regression. We assume
that the observed values y differ from the function values f(x) by additive noise

y = f(x) + ϵ, (6)

4

http://www.mathworks.com/help/matlab/ref/mldivide.html
http://www.mathworks.com/help/matlab/ref/linsolve.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.solve.html

where the noise follows i.i.d. Gaussian distribution with zeros mean and variance σ2
n, ϵ ∼ N(0, σ2

n). Let Y
denote the vector of all observed values corresponding to the training points.

Further, we put a zeros mean Gaussian prior with covariance matrix Σp on the weights w, w ∼ N(0,Σp).
For simplicity, we assume Σp = σ2

0I.

1. [6 pts] Given the training data X,Y , we want to derive the predictive distribution p(f⋆|X⋆, X, y),
where X⋆ is the predictive input and f⋆ = f(X⋆). Denote Φ = Φ(X),Φ⋆ = Φ(X⋆) in the derivation.

(a) Inference in Bayesian linear model is based on posterior distribution over weights, we first want
to compute the posterior distribution of weights using Bayes rule

p(w|Y,X) =
p(Y |X,w)p(w)

p(Y |X)
, (7)

Derive the posterior distribution. (Hint: Since p(Y |X,w) and p(Y |X) are both Gaussian, p(w|Y, x)
will be Gaussian as well. You can assume this and only need to work out its mean and covariance.
You can ignore the constant terms without w in it, such as p(Y |X), to simplify the analysis.)

(b) Now we can get the predictive distribution as

p(f⋆|X⋆, X, Y) =

∫
p(f⋆|X⋆, w)p(w|X,Y)dw (8)

Again, you can assume p(f⋆|X⋆, X, Y) is Gaussian. Derive its mean and covariance.

2. [3 pts] Now we want to examine the regression from Gaussian process perspective. Let the kernel
function be k(x, x′) = σ2

0ϕ(x)
⊤ϕ(x′). We assume f(x) ∼ GP (0, k(x, x′)) and the output y still follows

(6). Derive the predictive distribution p(f⋆|X⋆, X, Y) given the training data X,Y and predictive input
X⋆. Actually, Problem 1.d already gives you the results, you can only plug in the kernel function and
get the predictive distribution.

3. [3 pts] Show 1 and 2 are equivalent, you only need to show that mean of the Gaussian distribution
are equivalent, the equivalence of the variance is not required.

4. [3 pts] When D > n, which form would you use in prediction? How about D < n?

Problem 3: Adaboost with Decision Stumps [Adona - 40pts]

In this question you will implement the Adaboost algorithm with Decision Stumps. Remember to follow the
detailed coding and submission instructions at the top of this file!

• Data: All questions will use the following datastructures:

– X ∈ Rn×2 is a matrix of 2D data, where each row is a data point, and each column is a feature.

– Y ∈ {−1,+1}n×1 is a vector of training labels

– D ∈ [0, 1]n×1 is a vector of data point weights

• SUBMISSION CHECKLIST

– Submission executes on our machines in less than 10 minutes.

– Submission is smaller than 30MB.

– Submission is a .tar file.

– Submission returns matrices of the exact dimension specified.

5

Background: Boosting is a strategy for constructing a powerful classifier as a carefully weighted sum of
simple, weak classifiers, each of which is good at classifying different parts of the input space. The weak
classifiers are trained to be good at different parts of the input space by being presented with different
re-weighted versions of the same dataset. Ideally, a boosted classifier combines the low-variance of its weak
classifiers with the low bias resulting from taking arbitrary linear combinations of such weak classifiers,
resulting in a high-accuracy classifier which is robust to overfitting. It’s a really ingenious theory, let’s see
how it works in practice!

Formally, we construct an (Ada)boosted classifier H over T training stages. At each stage t ∈ 1..T , we
train a weak classifier ht on the weighted dataset (X,Y) with weights Dt, (X,Y,Dt). Based on ht’s weighted
error rate, ϵt, we calculate ht’s associated multiplicative factor αt =

1
2 ln(

1−ϵt
ϵt

). αt intuitively captures our
confidence in ht’s judgement, and is thus big when ϵt is close to zero or one, and small when ϵt is close to
.5 (random guess). Also based on the confidence αt and the predictions of the weak classifier ht we update
our data point weights to emphasize points which we mis-classified, and de-emphasize points which we got
correctly: Dt+1(i) ∝ Dt(i) exp(−αtY (i)ht(X(i, :)). Finally, we put it all together by defining the boosted

classifier H(x) = sign(
∑T

t=1 αtht(x)).
As you probably have noticed, most of the calculations above are on the weighted dataset (X,Y,Dt).

Let’s look closer at the intuition behind a weighted dataset, to understand how to perform calculations with
it. Weighting a dataset (X,Y) with weights D corresponds to implicitly building a new dataset (X ′, Y ′)
which we obtain by re-drawing the elements of (X,Y) with probability D. There are infinitely many ways
to re-draw (X ′, Y ′), but on average any particular instantiation of (X ′, Y ′) has Di versions of (xi, yi). An
equivalent way of looking at re-weighting is that we are changing the ground truth probability distribution
P , from which (X,Y) are drawn, to a new distribution P ′, from which (X ′, Y ′) are drawn. Throughout
the problem, whenever we use the weighted dataset (X,Y,D), we are implicitly using a dataset (X ′, Y ′)
drawn from the underlying distribution P ′. The main way we use (X,Y,D) is to compute its empirical
probability distribution, in other words to compute P̂ ′, the empirical estimate of P ′. What is P̂ ′(x) equal

to? P̂ ′(x) =
∑n′

j=1 δ(x
′
j = x) =

∑n
i=1 Diδ(xi = x) = the weighted empirical counts! We will use P̂ ′, the

weighted empirical counts, everywhere below: to compute the weighted information gains in 1, to compute
the weighted error of the best stump in 2, etc.

Finally, the last decision to take is which weak classifiers to use. The weak classifiers could be any type
of classifier: Naive Bayes, logistic regression, SVM, decision trees, etc. In this problem, we will use Decision
Stumps.

Decision Stumps [22]

Decisions stumps are perhaps the most commonly used weak classifier in boosting methods. A decision
stump is a model consisting of a one-level decision tree. We can describe a decision stump via three values
(f, x, o): the feature f ∈ {1, .., k} along which we are splitting; the value x which we use as our splitting
threshold (≤ x or > x); and the orientation, o ∈ {−1,+1}, where the classifier assigns the label o to elements
≤ x, and label −o to elements > x. Given a dataset with k features (in this problem we will use k = 2), we
can generate up to (n− 1)× k different decision stumps by iterating through the features: for each feature,
we sort the datapoints X along that feature, then build up to (n− 1) decision stumps by splitting through
the midpoint between each two consecutive distinct points. NOTE: As not all points may be distinct, the
total number of stumps may in practice be smaller than (n− 1)× k.

At any iteration t of the Adaboost algorithm, we are given a weighted dataset (X,Y,Dt) and are asked
to identify the “best” decision stump ht. In this problem, we measure “best” via the notion of information
gain: the information gain of splitting along feature i on threshold x is given by the decrease in entropy
H between the Bernoulli distributions of Y and of Y | Xi, x: I(Y,Xi, x) = H(Y) − H(Y | Xi, x). Notice
that again, we are using the weighted dataset (X,Y,D), or, implicitly, the modified dataset (X ′, Y ′). For
this reason, all entropy calculations above are over the modified distribution P ′, and thus use the weighted
empirical counts defined above. Also, if one of the empirical counts ends up being 0, we define 0 log(0) = 0.
To put it all together: at each iteration t, we identify all possible decision stumps, compute for each decision
stump its information gain, and choose the decision stump with the highest information gain as our ht.

NOTE: We will not provide you with a development dataset (X,Y). Instead, we expect you to generate

6

your development datasets following standard ML development procedure: First, start with small (n = 5),
hand-defined datasets for which you can manually calculate what the desired outputs should be. An example
of such a dataset is provided in the course slides on Adaboost. Once you are confident that your algorithm
works on your small dataset, think about what a ”standard” dataset you might want to classify with Adaboost
looks like. What does the decision boundary look like? How might you generate a 2-class dataset with such
a decision boundary? Figure out a method, generate a random dataset (recommended: n = 1000), and check
that your algorithm still does what you expect it to do. The simplest way to check is visually: what graphs
can you plot to get a sense for what your algorithm is doing?

1. Calculating Information Gains[15 pts]
Complete the function [ns, fs, xs, gains] = getWeightedInfoGainForStumps(X, Y, D). fs, xs and gains
are each ns× 1 vectors, where ns is the number of distinct decision stumps on X. For decision stump
i ∈ {1, .., ns}, fs[i] ∈ {1, 2} is the feature along which the stump splits, xs[i] ∈ R is the splitting
threshold, and gains[i] ∈ R+ is the weighted information gain obtained by using the decision stump.

2. Choosing the best stump [5 pts]
Complete the function [s, eps] = chooseBestStump(X, Y, D, fs, xs, gains). s is a ”struct” data structure
encapsulating all relevant information for the best (highest info gain) decision stump: s.f , the feature
along which the stump splits; s.x the splitting threshold; and s.o the stump orientation, the label the
stump classifier assigns to elements ≤ s.x. eps ∈ [0, 1] is the weighted error of the resulting stump
classifier s. The orientation s.o ∈ {−1,+1} is chosen such that the classifier has minimal weighted
error ϵ (with ties ϵ = 0.5 assigned s.o = −1).

3. Predicting using a stump [2 pts]
Complete the function [Ypred] = predictWithStump(X, s). Y pred is a n×1 vector of predicted labels
for data X using decision stump s.

Adaboost Training [18]

Now that we have a method for choosing the best decision stump, we can proceed with training the Adaboost
classifier.

1. Compute the multipliers αt [2 pts]
Complete the function [alpha] = computeAlpha(eps). eps ∈ [0, 1] is the weighted error of a decision
stump s, as computed by the function chooseBestStump. α ∈ R is the resulting multiplier.

2. Compute the new dataset weights Dt+1 [3 pts]
Complete the function [Dnew] = computeNewWeights(X, Y, D, alpha, s). Dnew is a n× 1 vector of
new weights computed based on the old weights D, the new decision stump s and the associated multi-
plicative factor alpha. Note that D and Dnew are both normalized:

∑n
i=1 D(i) =

∑n
i=1 Dnew(i) = 1.

3. Predict using the Adaboost model H [3 pts]
Complete the function [H] = predictAdaBoost(X, alphas, stumps). alphas is a T × 1 vector of
multiplicative weights, stumps is a T × 1 cell array of decision stumps, and H is a n × 1 vector of
Adaboost classification labels for the data points X.

4. Train the Adaboost model [10 pts]
Finally putting everything together! Complete the function [alphas, stumps] = trainAdaboostModel(
X, Y, Tmax). The function should train an Adaboost model for a maximum number of iterations
Tmax, and stop if at any point the weighted error eps of the best decision stump is equal to 0.5.
alphas is a T × 1 vector of multiplicative weights and stumps is a T × 1 cell array of decision stumps,
where T is the total number of iterations.

7

