

⁽b) Analytical Model Showing Global and Local Coordinate Systems

4.2. Degrees of Freedom (Kassimali §3.2)

- Degrees of freedom: the independent joint displacements (translations and rotations) that are necessary to specify the deformed shape of the structure when subjected to an arbitrary loading.
- Truss structure: only joint translations provide the DOFs; no rotations.
- For this example, joint displacement vector contains five necessary and sufficient joint displacements to uniquely define an arbitrary deformed shape of the truss.

Numbering the DOFs

- DOFs are numbered starting at the lowestnumbered joint that has a DOF, proceeding sequentially to highernumbered joint.
- In case of more than one DOF at a joint, the translation along global X is numbered first, followed by the global Y.
- The first assigned DOF number is 1; the last assigned DOF number should be equal to *NDOF*.

Numbering the Restrained Coordinates

- After all DOFs are numbered, restrained coordinates are numbered in a similar manner, beginning with *NDOF*+1.
- The last restrained coordinate should be assigned with a number equal to 2(*NJ*).

 $d_6 = d_7 = d_8 = 0$

4.3. Member Stiffness Relations in Local Coordinates (Kassimali §3.3)

- Arbitrary member m: end displacements u_i, end forces Q_i (i = 1 ~ 4).
- Positive directions of u_i and Q_i are along local positive x-y directions.
- Important to follow standard sequence : 1 -> 2-> 3 -> 4.
- The stiffness matrix for a member expresses the forces at the ends of the member as functions of the displacements of those ends.

 $\mathbf{Q} = \mathbf{k}\mathbf{u}$

 k_{ij} – force required along *i* in order to have unit displacement <u>ONLY</u> along *j* and <u>ZERO</u> displacement along other DOFs.

	Q_1	k_{11}	k_{12}	k_{13}	k_{14}	u_1
$Q_1 = k_{11}u_1 + k_{12}u_2 + k_{13}u_3 + k_{14}u_4$	Q_2	k_{21}	k_{22}	k_{23}	k ₂₄	<i>u</i> ₂
$Q_2 = k_{21}u_1 + k_{22}u_2 + k_{23}u_3 + k_{24}u_4$	$\begin{bmatrix} Q_3 \\ Q_4 \end{bmatrix}^{-}$	$\begin{bmatrix} k_{31} \\ k_{41} \end{bmatrix}$	k ₃₂ k ₄₂	k ₃₃ k ₄₃	$\begin{array}{c} k_{34} \\ k_{44} \end{array}$	<i>u</i> ₃ <i>u</i> ₄
$Q_3 = k_{31}u_1 + k_{32}u_2 + k_{33}u_3 + k_{34}u_4$	or, symbolically, as					
$Q_4 = k_{41}u_1 + k_{42}u_2 + k_{43}u_3 + k_{44}u_4$						

 $\mathbf{Q} = \mathbf{k}\mathbf{u}$

Members 5 and 6
$$E = 29,000$$
 ksi, $A = 12$ in.²,
 $L = \sqrt{(18)^2 + (24)^2} = 30$ ft = 360 in.
 $\frac{EA}{L} = \frac{29,000(12)}{360} = 966.67$ k/in.

Thus,

	F 966.67 0 -966.67 (ר(
$k_5 = k_6 =$	0 0 0 0) k/in.
) \

9