4.5. Member Stiffness Relations in Global Coordinates
(Kassimali §3.6)
* Local stiffness relations
Q = ku
e Local-global force transformation
F=T7Q =TTku
e Substitute displacement transformation u = Tv into the above:

F = TTKTv
* Defining member stiffness matrix in the global coordinate system:
K = TTKT
* We have
F = Kv

e Matrix K is symmetric (like K):
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a stiffness coefficient K represents the force at the location and in the direction
of Frequired, along with other end forces, to cause a unit value of displacement
v;, while all other end displacements are zero, Thus, the jth column of matrix K
consists of the end forces in the global coordinate system required to cause a.
unit value of the end displacement vj, while all other end displacements are zero.
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4.6. Structure Stiffness Relations (Kassimali §3.6)
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* Member 2: * Member 3:
FO = kP, + kD4 FO =KJdi + KD dy
FO = kP4, + k24, FO =kQd + KD dy
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Structure stiffness relations between joint loads P and jot displacements d:

Pl — F3(1) + F1(2) + F3(3) =( (1) +K<2) (3))d1 + (K(l) +K(2) +K(3))d2
P, = F;l) + F2(2) + F4(3) (Kg) + Kz(? + K(3))d1 + (K(l) (2) +K(3))d

P=Sd

Stiffness matrix S: " X . ) X
|:K§?+K()+K() K3(4)+K()+K():|

Kg) —|—K(2) +K(3) 1) +K(2) +Kﬁ)

Stiffness matrix of a linear elastic structure is always symmetric

The structure stiffness matrix S can be interpreted in a manner analogous to the
member stiffness matrix. A structure stiffness coefficient Si represents the force
at the location and in the direction of P; required, along with other joint forces,
to cause a unit value of the displacement d;, while all other joint displacements
are zero. Thus, the jth column of the structure stiffness matrix S consists of the
joint loads required, at the locations and in the directions of all the degrees of
freedom of the structure, to cause a unit value of the displacement d; while all
other displacements are zero. ‘
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A structure stiffness coefficient Sij represents the force.

at the location and in the direction of P; required, along with other joint forces,
to cause a unit value of the displacement d;, while all other joint displacements

are zero.
I: (1)+K(2)—|—K(3) K(l) (2)+K(3)

K(l) +K(2) +K(3) (1)+K(2)_|_K(3)

Undeformed
configuration

Deformed
\\ /—Conﬁguration
\
\
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Assembly Using Member Code Numbers

Py, dy

¢ Code numbers for every member are the
numbers of the structure DOFs or restrained
coordinates:
v; — X direction of beginning joint
V, — Y direction of beginning joint
V3 — X direction of end joint
V, — Y direction of end joint

e Member 1: 3,4,1,2
e Member 2: 1,2,56
e  Member 3: 7,8,1,2

e ]
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Py, dy
Code numbers of concern during assembly of joint load
vector: 1 ~ NDOF
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(b) Member End Forces and End Displacements in

the Global Coordinate System 23
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Code numbers of concern during assembly
of stiffness matrices: 1 ~ NDOF

Now that both P and Sare assembled,
displacements d can be solved:
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* Obtain member end displacements
in the global coordinates, v, from JPPT. :
the joint displacements, d, using (IFI(I):‘. 3
code numbers FZ’(O 4
* Member-end displacements in local Fi= |
coordinates: W
— / F |2
u="Tv X
* Member-end forces in local EERENAE
coordinates (axial force = Q; = —Qy): R, O |4 [FO71
Q = ku Rs FO |5 P2 |2
* Member end forces in global R = =1 Fo=|--%r
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3
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Alternatively:
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(d) Assembly of Support Reaction Vector R
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Please review Kassimali 3.8 — a great summary of the complete procedure.

3.8 PROCEDURE FOR ANALYSIS

Based on the discussion presented in the previous sections, the following step-
by-step procedure can be developed for the analysis of plane trusses subjected
to joint loads.

1. Prepare an analytical model of the truss as follows.
a. Draw a line diagram of the structure, on which each joint and
member is identified by a number.

One place we will implement differently from the textbook:

5¢. Determine the member stiffness matrix in the local coordinate sys-
tem, k, using Eq. (3.27); then calculate member end forces in the
local coordinate system by using the stiffness relationship Q = ku.__

______________________________________________________________________ =

(Eq. (3.7)). The member axial force, Q,, equals the first element, Q;,
of the vector Q (i.e., Q, = Q1); a positive value of Q, indicates that
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i the axial force is compressive;and a negative value indicates that the
\._axial force is tensile, ™
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Set Q, = Q,, so that tension is positive
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