

Member Local End Displacements: $\mathbf{u}_{2} = \begin{bmatrix} 1.8828 \\ 1.4470 \\ -0.0035434 \\ 1.8454 \\ 1.3533 \\ -0.013559 \end{bmatrix}$

10

1.3533 in.

0.013559 rac

8454 in

Equilibrium Check: To check whether the member is in equilibrium, we apply the three equations of equilibrium to the free body of the member shown in Fig. 6.6(d). Thus,

$+ \sum F_x = 0 109.44 + 0.15(240) - 145.44 = 0$	Checks
$+ \nearrow \sum F_y = 0$ -17.07 - 0.2(240) + 65.07 = 0	Checks
$+(\sum M_{\odot} = 0 -2,960.4 - 0.2(240)(120) - 6,896.7 + 65.07(240) =$	-0.3 ≅ 0
	Checks

14

13

- Transformation from local to global is similar to truss structures.
- Because $\mathbf{T}^{-1} = \mathbf{T}^T$ (transformation matrix \mathbf{T} is an orthogonal matrix):

$$\mathbf{F} = \mathbf{T}^{-1}\mathbf{Q} = \mathbf{T}^T\mathbf{Q}$$

$\overline{F_1}$		$\cos\theta$	$-\sin\theta$	0	0	0	0	$\begin{bmatrix} Q_1 \end{bmatrix}$
F_2		$\sin \theta$	$\cos \theta$	0	0	0	0	Q_2
F_3		0	0	1	0	0	0	Q_3
F_4		0	0	0	$\cos \theta$	$-\sin\theta$	0	Q_4
F_5		0	0	0	$\sin \theta$	$\cos \theta$	0	Q_5
F_6		0	0	0	0	0	1	$\lfloor Q_6 \rfloor$

- Crossing out 3rd and 6th rows and columns of **T**, we get the transformation matrix **T** for truss structures.
- Likewise for displacements:

$$\mathbf{v} = \mathbf{T}^{-1}\mathbf{u} = \mathbf{T}^T\mathbf{u}$$

