5.5. Structure Stiffness Relations (Kassimali §6.5)

(a) Plane Frame

(b) Analytical Model
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in which S represents the NDOF x NDOF structure stiffness matrix, and Pis
the NDOF x 1 structure fixed-joint force vector, for the plane frame with
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an element S;; of the structure stiffness matrix
S represents the force at the location and in the direction of P; required, along
with other joint forces, to cause a unit value of the displacement d;, while all
other joint displacements are 0, and the frame is subjected to no external loads.

(a) First Column of S(d) = 1,d, = d3 = 0) {b) Second Column of S (dy, = 1, dy = dy = 0)
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Structure fixed-joint force vector
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(a) Fixed Frame Subjected to Member Loads
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Equivalent Joint Load vector P, = —P;:
another interpretation to structure fixed-joint
force vector Py.

Consider the scenario containing only
member loads, and without external
joint loads, i.e. P=0,

—P;=Sd

The negatives of the structure fixed-
joint forces cause the same joint
displacements as the actual member
loads.
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(a) Actual Frame Subjected to Member Loads
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(c) Actual Frame Subjected to Equivalent Joint Loads
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EXAMPLE 6.5
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E, A, I = constant 7

E =200 GPa
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I =722,2(10% mm* 6 -

(a) Frame (b) Analytical Model
Assembly can be performed using code numbers: P — Pf = Sd

Assemble structures stiffness matrix S:
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To assemble fixed-joint force vector Pf, start with fixed-end forces for each member:
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e Please review Section 6.6 in Kassimali— a great summary of the complete
procedures; and two more examples: Example 6.6 and 6.7.

6.6 PROCEDURE FOR ANALYSIS

Using the concepts discussed in the previous sections, we can now develop the
following step-by-step procedure for the analysis of plane frames by the matrix
stiffness method.

1. Prepare an analytical model of the structure, identifying its degrees of
freedom and restrained coordinates (as discussed in Section 6.1).
Recall that for horizontal members, the coordinate transformations
can be avoided by selecting the left-end joint of the member as the
beginning joint,

2. Evaluate the structure stiffness matrix S(NDOF x NDOF) and fixed-
joint force vector Pr (WNDOF x 1). For each member of the structure,
perform the following operations:

a. Calculate the length and direction cosines (i.e., cos 8 and sin ) of
the member (Egs. (3.62)).




