
CS502: Compilers & Programming Systems

Zhiyuan Li
Department of Computer Science

Purdue University, USA

Introduction and
Lexical Analysis

Course Web Sites

• All course contents and discussions, except grades, are on
Piazza:

https://piazza.com/purdue/fall2014/cs502/home

Grades are stored on Purdue’s Blackboard Learn, due to
student information privacy regulations.

Please take the course interest survey posted on Piazza

Course Outline

• This course studies how to mechanically translate programs
which are written in a certain programming language.
– The syntax analysis can be used to translate documenting languages

as well, e.g. html

• A programming language defines the components of
programs.
– It defines the syntax form for each of such components.
– It assigns the meaning (i.e. the semantics) to such syntax forms.

• Assignment statements
• Branch statements
• Loops
• Function calls and returns

• A translator for the programming language analyzes a
given program, and then
– transforms it into another semantically equivalent program, or
– directly performs the semantic actions specified in the program.

• In other words, a translator implements a programming
language.

• Two main classes of language translators:
– Interpreters: Analyze a statement and execute it immediately.

(Example: java virtual machines, UNIX shells, mobile scripts.)
– Compilers: Analyze the whole program, then generates an

equivalent program for later execution. This approach results in
more efficient and more reliable codes,

• Especially useful for performance-critical programs which will be
executed many times and have long life-time.

• Conventionally, a compiler analyzes a program written in a
high-level language and generates an equivalent program in
a low-level language, e.g. machine code, or intermediate
code.

Abstract Syntax Tree

• At the center of a modern compiler, there is the internal
representation (IR) of the program, which takes the form of
abstract syntax trees (ASTs), or in short, syntax trees.

• The ASTs define the operations of a program.
– Information about the identifiers is stored in the symbol table.

Main Phases in a Compiler

• Syntax analysis
– converting the source code into ASTs and the symbol table

• We give a quick coverage in this course

• Semantic analysis
– type checking, memory allocation, dataflow analysis

• Code generation
– Optimization

• Memory
• Speed
• Reliability

• We emphasize dataflow analysis, code optimization and
impact of parallelism and memory locality

Why Study Compiler Techniques

• To better understand the designs of programming languages.
– Understand compilation error messages better

• To better understand program execution mechanism.
– Better able to diagnose program execution errors
– How does my code interact with the library routines?

• Does the program error occur in my code or elsewhere?
– Better understand the vulnerability of program execution

• How are strings implemented, e.g.

• To understand limitations of compilers
– Write programs in a way that their performance is not hampered by

such limitations

• To be able to develop sophisticated user interfaces for
software tools.

An Open Source Compiler

• GNU gcc compiler and its supporting tools are well known
and have extensive community support

• Many industrial labs and computer/software vendors use it
for R&D and for their shipped products

• Many university research projects use it as an
experimentation platform

• NOTE: LLVM is another compiler tool that gains wide
usage and support

Lexical Analysis

• The first phase of the compiler is the lexical analyzer, also
known as the scanner,
– which recognizes the basic language units, called tokens.

• The exact characters in a token is called its lexeme.
• Tokens are classified by token types,

– e.g. identifiers, constant literals, strings, operators, punctuation
marks, and key words.

• Different types of tokens may have their own semantic
attributes (or values) which must be extracted and stored in
the symbol table.

• The lexical analyzer may perform semantic actions to
extract semantic attributes and insert them in the symbol
table.

• How to classify token types?
– It mainly depends on what form of input is needed by the next

compiler phase, the parser.
– The parser takes a sequence of tokens as its input

Finite Automata (DFA)

• After we decide how to classify token types, we can use one
of several ways to precisely express the classification.

• A common method is to use a finite automaton to define all
character sequences (i.e. strings) which belong to a
particular token type.
– The states, the starting state, the accepting states of a finite

automaton.
– An accepting state is also called a final state.
– Implemented by a transition table

• Given the definitions of different token types, it is possible
for a string to belong to more than one type.
– Such ambiguity is resolved by assigning priorities to token types.

For example: Key words have a higher priority over identifiers.

• Finite automata for different token types are combined into a
transition diagram for the lexical analyzer.

• Following the “longest match” rule –
– keep scanning the next character until there is no corresponding

transition. The longest string which matches an acceptance state
during the scanning is the recognized token.

• Go back to the starting state of the transition diagram, ready
to recognize the next token in the program.

• Semantic actions can be specified in the transition diagram.
• The lexical analyzer can also be used to remove comments

from the program.

NFA

• Merging several transition diagrams into one may create the
problem of nondeterminism.

• Two characteristics of an NFA
– May exist edges which correspond to null input, called ε-edges, or ε-

transitions
– May exist more than one edge from the same state marked by the

same input character

• A nondeterministic finite automaton (NFA) accepts an input
string x if and only if there exists some path from the start
state to some accepting state, such that the edge labels along
the path spell out x.

NFA vs. DFA

• The DFA guarantees linear time complexity for scanning the
input and determining whether to accept the input

• The NFA’s implementation can take one of the following
approaches:
– Depth first search: may need to backtrack

• Worst-case time exponential in the number of edges
– Breadth first search: non-back tracking

• On-the-fly simulation of NFA->DFA conversion
• O(k(n+m)) time complexity

• There exist cases for which an NFA has significantly fewer
states than any equivalent DFA

Regular Expressions

• Tokens can also be defined by declarations of regular
expressions

• Regular expressions can be analyzed by compiler-like tools
such that lexical analyzers can be constructed automatically
to scan the input and extract the defined tokens

• Such a lexical-analyzer generator analyzes the declared
regular expressions and generate a DFA transition table.
– 1) For any given regular expression, there exist a DFA which

accepts the same set of strings represented by the regular expression.
– 2) For a given DFA, there exist a regular expression which

represents the same set of strings accepted by the DFA.

• Regular expressions are composed by following a set of
syntax rules:
– Given an input alphabet Σ, a regular expression is a string of

symbols from the union of the set Σ and the set { (,), ∗, |, ε}
– The regular expression ε defines a language which contains the null

string.
• What is the DFA to recognize it?

– The regular expression a defines the language { a }.
– If regular expressions RA and RB define languages A and B,

respectively, then
• the regular expression (RA) | (RB) defines the language A ∪ B,
• the regular expression (RA)(RB) defines the language AB

(concatenation),
• and the regular expression (RA)∗ defines the language A∗ (Kleene

closure).

Several Definitions and Properties
• Two regular expressions are equivalent if they represent the

exactly the same set of strings.
• There exist an algorithm to minimize a DFA
• There also exist algorithms which, for any DFA M, can

construct a regular expression which represents the set of
strings recognized by M.
– (Unfortunately, sometimes the regular expression generated by such

algorithms can be difficult to read.)

• There exist many languages, i.e. sets of input strings, which
cannot be recognized by a DFA
– DFA is too “primitive”
– The “pumping” lemma is often an effective tool to prove that a

certain set of strings cannot be recognized by a DFA

GCC’s lexical analyzer

• The front end of GCC has a lexical analyzer and an LALR
parser, generated by the lex (flex) and YACC tools.

• The lex tool takes regular expressions as its input and
generates a DFA transition table.

