CS502: Compilers & Programming Systems

Introduction and
Lexical Analysis

Zhiyuan L1
Department of Computer Science
Purdue University, USA

PURDUE

UNIVERSITY



Course Web Sites

« All course contents and discussions, except grades, are on
Piazza:

https://piazza.com/purdue/fall2014/cs502/home

Grades are stored on Purdue’s Blackboard Learn, due to
student information privacy regulations.

Please take the course interest survey posted on Piazza

f;l
- -
> :
4 A%
UNIVERSITY



Course Outline

e This course studies how to mechanically translate programs
which are written in a certain programming language.
— The syntax analysis can be used to translate documenting languages
as well, e.g. html
* A programming language defines the components of
programs.
— It defines the syntax form for each of such components.
— It assigns the meaning (1.e. the semantics ) to such syntax forms.

* Assignment statements
* Branch statements
* Loops

* Function calls and returns

PURDUE

UNIVERSITY




« A trandator for the programming language analyzes a
given program, and then
— transforms it into another semantically equivalent program, or

— directly performs the semantic actions specified in the program.

* In other words, a translator implements a programming
language.

PURDUE

UNIVERSITY




 Two main classes of language translators:

— Interpreters. Analyze a statement and execute it immediately.
(Example: java virtual machines, UNIX shells, mobile scripts.)

— Compilers: Analyze the whole program, then generates an
equivalent program for later execution. This approach results in
more efficient and more reliable codes,

» Especially useful for performance-critical programs which will be
executed many times and have long life-time.

« Conventionally, a compiler analyzes a program written in a
high-level language and generates an equivalent program in
a low-level language, €.g. machine code, or intermediate
code.

PURDUE

UNIVERSITY




Abstract Syntax Tree

At the center of a modern compiler, there 1s the internal
representation (IR) of the program, which takes the form of
abstract syntax trees (ASTs), or in short, Syntax trees.

The ASTs define the operations of a program.

— Information about the i1dentifiers is stored in the symbol table.

PURDUE

UNIVERSITY



Main Phases in a Compiler

e Syntax analysis
— converting the source code into ASTs and the symbol table
» We give a quick coverage in this course
« Semantic analysis
— type checking, memory allocation, dataflow analysis

* Code generation
— Optimization
* Memory
* Speed
- Reliability
 We emphasize dataflow analysis, code optimization and
impact of parallelism and memory locality

PURDUE

UNIVERSITY




Why Study Compiler Techniques

* To better understand the designs of programming languages.

— Understand compilation error messages better

e To better understand program execution mechanism.
— Better able to diagnose program execution errors
— How does my code interact with the library routines?

* Does the program error occur in my code or elsewhere?
— Better understand the vulnerability of program execution
« How are strings implemented, e.g.
* To understand limitations of compilers
— Write programs in a way that their performance is not hampered by
such limitations
 To be able to develop sophisticated user interfaces for
SO ftware tools.

PURDUE

UNIVERSITY



An Open Source Compiler

GNU gcc compiler and 1its supporting tools are well known
and have extensive community support

Many industrial labs and computer/software vendors use it
for R&D and for their shipped products

Many university research projects use it as an
experimentation platform

NOTE: LLVM is another compiler tool that gains wide
usage and support

PURDUE

UNIVERSITY



Lexical Analysis

The first phase of the compiler is the lexical analyzer, also
known as the scanner,

— which recognizes the basic language units, called tokens.
The exact characters in a token 1s called its lexeme.

Tokens are classified by token types,
— e.g. 1dentifiers, constant literals, strings, operators, punctuation
marks, and key words.
Different types of tokens may have their own semantic
attributes (or values) which must be extracted and stored in
the symbol table.

PURDUE

UNIVERSITY



* The lexical analyzer may perform semantic actions to
extract semantic attributes and insert them in the symbol
table.

 How to classify token types?

— It mainly depends on what form of input is needed by the next
compiler phase, the parser.

— The parser takes a sequence of tokens as its input

PURDUE

UNIVERSITY




Finite Automata (DFA)

» After we decide how to classify token types, we can use one
of several ways to precisely express the classification.

* A common method is to use a finite automaton to define all
character sequences (1.€. strings) which belong to a
particular token type.

— The states, the starting state, the accepting states of a finite
automaton.

— An accepting state 1s also called a final state.
— Implemented by a transition table

» Given the definitions of different token types, it 1s possible
for a string to belong to more than one type.

— Such ambiguity is resolved by assigning priorities to token types.
For example: Key words have a higher priority over identifiers.

PURDUE

UNIVERSITY




 Finite automata for different token types are combined into a
transition diagram for the lexical analyzer.

« Following the “longest match” rule —

— keep scanning the next character until there is no corresponding
transition. The longest string which matches an acceptance state
during the scanning is the recognized token.

* (o back to the starting state of the transition diagram, ready
to recognize the next token in the program.

» Semantic actions can be specified in the transition diagram.

« The lexical analyzer can also be used to remove comments
from the program.

PURDUE

UNIVERSITY



NFA

e Merging several transition diagrams into one may create the
problem of nondeterminism.

 Two characteristics of an NFA

— May exist edges which correspond to null input, called e-edges, or e-
transitions

— May exist more than one edge from the same state marked by the
same input character
* A nondeterministic finite automaton (NFA) accepts an input
string x 1f and only 1f there exists some path from the start

state to sOme accepting state, such that the edge labels along
the path spell out x.

PURDUE

UNIVERSITY



NFA vs. DFA

« The DFA guarantees linear time complexity for scanning the
input and determining whether to accept the input

 The NFA’s implementation can take one of the following
approaches:

— Depth first search: may need to backtrack
» Worst-case time exponential in the number of edges

— Breadth first search: non-back tracking
* On-the-fly simulation of NFA->DFA conversion
* O(k(n+tm)) time complexity

» There exist cases for which an NFA has significantly fewer
states than any equivalent DFA

PURDUE

UNIVERSITY



Regular Expressions

* Tokens can also be defined by declarations of regular
expressions

e Regular expressions can be analyzed by compiler-like tools
such that lexical analyzers can be constructed automatically
to scan the input and extract the defined tokens

» Such a lexical-analyzer generator analyzes the declared
regular expressions and generate a DFA transition table.

— 1) For any given regular expression, there exist a DFA which
accepts the same set of strings represented by the regular expression.

— 2) For a given DFA, there exist a regular expression which
represents the same set of strings accepted by the DFA.

PURDUE

UNIVERSITY




e Regular expressions are composed by following a set of
syntax rules:

Given an input alphabet X, a regular expression is a string of
symbols from the union of the set X and the set { (, ), *, |, €}

The regular expression ¢ defines a language which contains the null
string.

» What is the DFA to recognize it?
The regular expression a defines the language { a }.
If regular expressions RA and RB define languages A and B,
respectively, then

* the regular expression (RA) | (RB) defines the language A U B,

* the regular expression (Ra)(RB) defines the language AB
(concatenation),

 and the regular expression (RA)= defines the language A (Kleene
closure).

PURDUE

UNIVERSITY



Several Definitions and Properties

Two regular expressions are equivalent 1f they represent the
exactly the same set of strings.

There exist an algorithm to minimize a DFA

There also exist algorithms which, for any DFA M, can
construct a regular expression which represents the set of
strings recognized by M.
— (Unfortunately, sometimes the regular expression generated by such
algorithms can be difficult to read.)
There exist many languages, 1.€. sets of input strings, which
cannot be recognized by a DFA
— DFA is too “primitive”
— The “pumping” lemma is often an effective tool to prove that a
certain set of strings cannot be recognized by a DFA

PURDUE

UNIVERSITY



GCC'’s lexical analyzer

* The front end of GCC has a lexical analyzer and an LALR
parser, generated by the lex (flex) and YACC tools.

* The /ex tool takes regular expressions as its input and
generates a DFA transition table.

PURDUE

UNIVERSITY



