
CS502: Compilers & Programming Systems

Zhiyuan Li
Department of Computer Science

Purdue University, USA

Context Free Grammars



Course Outline

• Languages which can be represented by regular expressions
are called regular languages. 
• Most language constructs are more complex than regular 

languages.
• Example: It is impossible to use a DFA to recognize all 

sequences of balanced (possibly nested) parentheses.
– The “pumping lemma” is often used to prove that a certain language 

is too complex to be regular.

• Context-free grammars (CFGs) are commonly used to 
define a wider class of languages because they are powerful 
enough to specify common syntax rules.



What is the grammar used for?

• It defines the correct forms of program constructs. 
• Program semantics will be defined in terms of program constructs.
• Given a context-free grammar, the compiler writer tries to construct a 

parser to recognize syntax constructs.
– The parser checks to see whether the program conforms to the grammar, i.e. 

whether it has the correct syntax structure.
• For an arbitrary context free grammar, we may or may not be able to 

build a parser automatically that recognizes all programs that conform to 
the grammar.

– Recall that, given an arbitrary regular expression, R, any of the three methods we 
studied (NFA, NFA DFA, DFA) can be used to build a lexical analyzer 
automatically that recognizes all strings defined by R, without backtracking.

• We may need to rewrite the grammar (manually) in a form 
for which we know how to build a parser.



Impact of the parser on semantics processing

• Not only must the parser recognize the correct syntactic 
forms, it must also be suitable for triggering correct 
semantic actions that 
– Build the correct abstract syntax tree

• This is vital to the generation of the correct final code

• Hence, we must study how to properly design the grammar 
for a programming language we want to implement.



Basic Concepts

• A language L is a set of strings formed by symbols from an 
alphabet. In the parsing phase, such symbols are tokens. 

• A program is viewed as a sequence of tokens.
• L is also often said to be a set of sentences. For 

programming languages, each sentence is a program(!)
• We use an example to explain the following terminology:

– Production rules and grammar symbols
– The start symbol
– A derivation step and a derivation sequence
– A terminal is a grammar symbol which derives nothing but itself. 

(The set of terminals form the vocabulary of L.)



– Beginning with the start symbol, every time we replace a 
nonterminal by the right hand phrase of one of its production rules, 
we have performed a derivation step and derived a new sentential 
form.

– A sentence is a special case of sentential forms
– Left-most (lm) vs. right-most (rm) derivations.
– Given a program, the parser in a modern compiler essentially 

performs lm (or rm ) derivations. 
• In each derivation step, a new node (and some new edges) may get 

inserted in the AST, or some new type information may get extracted 
and placed in the symbol table.

– If a sequence of tokens can be derived from the start symbol, then it 
is accepted by the CFG.

•



A Parse Tree

• A parse tree corresponds to a set of derivation sequences for 
a given input
– Given a parse tree, there exist a unique left-most derivation sequence 

and a unique right-most derivation sequence

• The parser can be viewed as incrementally (and implicitly) 
constructing a parse tree.

• A CFG is called ambiguous if and only if there exist a 
sentence for which there exist more than one parse tree.
– A CFG which contains a cycle is definitely ambiguous. Why?
– Why ambiguous grammars are bad?

• Program semantics is defined in terms of program constructs
• the ambiguity in the CFG often causes ambiguity in the definition of 

program constructs and operation orders.



• A key issue is whether the correct AST can be built by 
following that set of preference rules.

• Sometimes, additional rules are introduced (in English 
descriptions, e.g.) in order to define such constructs or 
orders unambiguously
– E.g. how to handle the “dangling else” case



Some common forms of production rules

• Use left recursion or right recursion to define a list of 
constructs.
– Example: List of statements.

• Use a “mirrored“ recursion to define nested pairs.
– Example: balanced and nested pairs of parentheses.

• Binary expressions



Parsers

• There are two fundamental approaches to parsing: top-down 
vs. bottom-up.
– With the top-down approach, the parser performs left-most 

derivations, beginning with the start nonterminal.
– With the bottom-up approach, the parser traces rightmost derivations 

backward, beginning with the given sentence (i.e. the sequence of 
tokens).


