CS502: Compilers & Programming Systems

Context Free Grammars

Zhiyuan L1

Department of Computer Science
Purdue University, USA

PURDUE

UNIVERSITY



Course Outline

« Languages which can be represented by regular expressions
are called regular languages.

e Most language constructs are more complex than regular
languages.

 Example: It isimpossible to use a DFA to recognize all
sequences of balanced (possibly nested) parentheses.

— The“pumping lemma” is often used to prove that a certain language
IS too complex to be regular.

o Context-free grammars (CFGs) are commonly used to
define awider class of languages because they are powerful
enough to specify common syntax rules.

PURDUE

UNIVERSITY



What is the grammar used for?

It defines the correct forms of program constructs.
Program semantics will be defined in terms of program constructs.

Given a context-free grammar, the compiler writer tries to construct a
parser to recognize syntax constructs.
— The parser checks to see whether the program conforms to the grammar, i.e.
whether it has the correct syntax structure.
For an arbitrary context free grammar, we may or may not be able to
build a parser automatically that recognizes all programs that conform to

the grammar.

— Recadll that, given an arbitrary regular expression, R, any of the three methods we
studied (NFA, NFA->DFA, DFA) can be used to build alexical analyzer
automatically that recognizes all strings defined by R, without backtracking.

We may need to rewrite the grammar (manually) in aform

! O Which we know how to build a parser.

PURDUE

UNIVERSITY



Impact of the parser on semantics processing

* Not only must the parser recognize the correct syntactic
forms, it must also be suitable for triggering correct
semantic actions that

— Build the correct abstract syntax tree
« Thisisvital to the generation of the correct final code

e Hence, we must study how to properly design the grammar

for a programming language we want to implement.

PURDUE

UNIVERSITY



Basic Concepts

A language L isaset of strings formed by symbols from an
alphabet. In the parsing phase, such symbols are tokens.

* A program isviewed as a sequence of tokens.

L is also often said to be a set of sentences. For
programming languages, each sentence is a program(!)

* We use an example to explain the following terminology:
— Production rules and grammar symbols

— The start symbol

— A derivation step and a derivation sequence

— A terminal isagrammar symbol which derives nothing but itself.
(The set of terminals form the vocabulary of L.)

PURDUE

UNIVERSITY



Beginning with the start symbol, every time we replace a
nonterminal by the right hand phrase of one of its production rules,
we have performed a derivation step and derived a new sentential
form.

A sentenceis aspecial case of sentential forms
Left-most (Im) vs. right-most (rm) derivations.

Given a program, the parser in a modern compiler essentially
performs|m (or rm ) derivations.
 |n each derivation step, a new node (and some new edges) may get

inserted in the AST, or some new type information may get extracted
and placed in the symbol table.

If a sequence of tokens can be derived from the start symbol, then it
IS accepted by the CFG.

PURDUE

NIVEZRSITY



A Parse Tree

o A parsetree correspondsto a set of derivation sequences for
agiven input
— Given a parse tree, there exist a unique left-most derivation sequence
and a unique right-most derivation sequence
* The parser can be viewed as incrementally (and implicitly)
constructing a parse tree.

A CFGiscalled ambiguousif and only if there exist a
sentence for which there exist more than one parse tree.
— A CFG which contains a cycle is definitely ambiguous. Why?

— Why ambiguous grammars are bad?
* Program semantics is defined in terms of program constructs

 the ambiguity in the CFG often causes ambiguity in the definition of
program constructs and operation orders.

PURDUE

UNIVERSITY



* A key issueiswhether the correct AST can be built by
following that set of preference rules.

o Sometimes, additional rules are introduced (in English

descriptions, e.g.) in order to define such constructs or
orders unambiguously

— E.g. how to handle the “dangling else” case

PURDUE

UNIVERSITY



Some common forms of production rules

o Useleft recursion or right recursion to define alist of
constructs.
— Example: List of statements.

o Usea“mirrored* recursion to define nested pairs.
— Example: balanced and nested pairs of parentheses.

e Binary expressions

PURDUE

UNIVERSITY



Parsers

* There are two fundamental approaches to parsing: top-down
vS. bottom-up.

— With the top-down approach, the parser performs left-most
derivations, beginning with the start nonterminal.

— With the bottom-up approach, the parser traces rightmost derivations
backward, beginning with the given sentence (i.e. the sequence of
tokens).

PURDUE

A SITY



