CS502: Compilers & Programming Systems

Bottom-up Parsing &
Interleaving Parsing with Semantic Actions

Zhiyuan LI
Department of Computer Science
Purdue University, USA

PURDUE

UNIVERSITY

Page 1 of 1

Unambiguous Grammars Ambiguous
Grammars

LL(k) LR(K)

LL(D LR(1)

LALR(1)

SLR

LR(0)

mk: @MSITStore:C:\li\Teach\352\Lectures\Modern-Compiler-Implementation-in-Java.chm... 2010-2-8

Bottom-Up Parsing

e With top-down parsing, it is often difficult to pre-
dict which production rule to apply such that the
nonterminal being considered can eventually derive
a string of terminals matching the input.

e With bottom-up parsing, the compiler construct the
right-most derivation backward, from the input to-
wards the start nonterminal, as if the parsing-tree is
constructed bottom-up.

—_

e Parsing actions:

— Shift: scan the next terminal. This is performed
when there is no new subtree ready be be built.

Hence the compiler needs to fetch one more more
terminals (as the leaves in the parsing tree) in
order to proceed.

—reduce: insert a new internal node when all its
children have been build.

e Within the compiler, A parsing-stack is used during
the parsing. The parsing stack can be thought as
storing the prefix of the right-most sentential form.
(The postfix is the rest of the sentence to be scanned.)

A shift causes the parser to move into a new state
and push that state number to the parsing stack.

A reduce causes the parser to pop out a number of

states off the parsing stack. These states correspond
to the grammar symbols in the right-hand side of
a production rule. The left-hand side nonterminal
symbol (as the result of the reduction) is checked
against the newly exposed state number on top of

the stack, using the GOTO table. The GOTO table
tells the parser what the next state should be.

e We want to be able to determine the parsing action
without having to look down the parsing stack. In-
stead, we want to determine by looking at the top
of the stack (and perhaps the terminals next in the
input).

e Hence, we store states, instead of grammar symbols
in the stack. A state encodes a part of the parsing
history. Bottom-up parsing based on states follows
the LR parsing method.

e For LR(k) parsers, the next parsing action is de-
termined by the top-of-stack state and the next £
token.

Page 1 of 1

T 3 8
X X
S'—=> .S§ > S —> X < L =>L,.S . 9
S > .(L) | xA 3 |S=>. (L) "5 5,5,
L - .S
q (L - .L,S L 5
CJs =) S —> (L.)
" o= PRE .
' \ S
S' >S.$% i ;)l)
L > S. S > (L)
This example shows how a deterministic LR(0) parser
can be built. The parsing action (shift or reduce)
can be determined w/o looking at the next token.
However, to determine the next state, one still needs

to look at the next token.

In an LR(0) parser, a state represents a set of LR(0)
items. Each item describes one of the possible “con-
gurations". A period """ separates the item into a

prefix (history) and a postfix (a possible future).

mk:@MSITStore:C:\li\Teach\352\Lectures\Modern-Compiler-Implementation-in-Java.chm::/7113/images/fig3-21 0.jpg 1/20/2009

li
Typewritten Text
This example shows how a deterministic LR(0) parser
can be built. The parsing action (shift or reduce)
can be determined w/o looking at the next token.
However, to determine the next state, one still needs
to look at the next token.

In an LR(0) parser, a state represents a set of LR(0)
items. Each item describes one of the possible "con-
gurations". A period "." separates the item into a
prefix (history) and a postfix (a possible future).

-- Each state contains one or more initial items
and the closure of such initial items

-- The state-transition diagram is implemented as a
parsing table

An LR(k) parsing table has two parts:
(1) The action table
(2) the goto table.

The goto table checks the top-of-stack state
against the newly reduced nonterminal

and determines what should be the next state to
push into the parsing stack.

li
Text Box

-- Each state contains one or more initial items
and the closure of such initial items

-- The state-transition diagram is implemented as a parsing table

An LR(k) parsing table has two parts:
(1) The action table
(2) the goto table.

The goto table checks the top-of-stack state
against the newly reduced nonterminal
and determines what should be the next state to push into the parsing stack.

An LR(k) parsing table is usually much larger than

LL(k) parsing table for the same CFG, because the
number of rows equal to the number of possible

states, instead of the number of non-terminals. In
practice, it is better to let parser-generators to generate
LR(k) parsing tables.

But again, we need to understand how LR(k) parsing is
performed in order to write a suitable grammar.

It is important to keep k as small as possible.
LR(0) parsing is limited in its power. A simple way to

enhance LR(0) parsing is to perform
SLR parsing, namely simple LR.

li
Typewritten Text

li
Text Box

An LR(k) parsing table is usually much larger than
LL(k) parsing table for the same CFG, because the
number of rows equal to the number of possible
states, instead of the number of non-terminals. In
practice, it is better to let parser-generators to generate
LR(k) parsing tables.

But again, we need to understand how LR(k) parsing is performed in order to write a suitable grammar.

It is important to keep k as small as possible.

LR(0) parsing is limited in its power. A simple way to enhance LR(0) parsing is to perform
SLR parsing, namely simple LR.

Page 1 of 1

X + $ E T
1 E 2 1 s5 g2 g3
S > .E$ —>S = E.$ 2 a
E = T+E 3 r2 s4.12 r2
E -5 T T - & | B g6 3
- ' —>»E > T.+E 5 | 13 r3 r3
Kk E > T 6 | rl rl rl
X +¢ Tﬁ 4
. E - T+.E
X E — . T+E
L % % ® E > .T . 6
T —= . x —»E —- T+E.

mk:@MSITStore:C:\li\Teach\352\Lectures\Modern-Compiler-Implementation-in-Java.chm::/7113/images/fig3-24 0.jpg 1/20/2009

Page 1 of 1

X + $ E T
l s g2 g3
2 a
3 s4 r2
4 W) g6 g3
> r3 r3
6 rl

mk: @MSITStore:C:\li\Teach\352\Lectures\Modern-Compiler-Implementation-in-Java.ch... 1/20/2009

€l

Algorithm (Constructing a SLR(1)
Parsing Table)

Given: an augmented grammar G.

Output: 1) A set of states, each associated
with a set of items; 2) An action table and
a goto table.

Making the Action Table
1. If state S transits to So on token x, then
Action|S|, x] = (shift,S)).

2. If state S| contains a completed item
[C — [e], then

Al

for every x € FOLLOW(C), Action[S],]
is (reduce,n),

where n is the index of the production rule
(' — [in the grammar.

(For people who forget what FOLLOW set is, we
have some notes in the end to review that.)

3. If S| contains the completed item 7/ —
Fe, where 7 is the new start nonterminal
and E is the old start nonterminal, then
Action[S,8] = accept.

Making the (GGoto Table.

An Example of an SLR Table

Consider the following grammar:

S --> R (rule 1)
R —--> id[R] (rule 2)
| id (rule 3)

Using the method to be discussed later, we can build
the parsing table as follows.

0T

ACTION GOTO
id [] $ R
0O 82 1
1 Accept
2 S3 r3 r3
3 82 4
4 SO
S} r2 r2

In the above $ means the end of the sentence.

We go through an example sentence, say id[id [id]]

a1

Example of Constructing an SLR(1) Parsing Table

Using the previous example gramma.

S —>R
R --> id[R]
| id

I0: S -> .R
R -> .id[R]
R -> .id

(rule 1)

(rule 2)

(rule 3)
R —-—> 11
id ——> I2

91

I1:

12:

13:

14

16:

id. [R]
id.

id[.R]
.id[R],
.id,

id[R.]

S -> R.
R —-—>
R ->
R ->
R ->
R ->
R —-—>
R —-—>

id[R].

13

14
12

15

To decide whether |2 presents a shift-reduce conflict,
we compute the FOLLOW set of R, i.e. what tokens
can possibly follow R in any sentential forms. The

answer is FOLLOW(R) = { $,] }. There is no

conflict.

We show how this leads to the parsing table pre-
sented earlier.

e LR(1) parsing is even more powerful than SLR. LR(1)
parsing is based on LR(1) items.

e To reduce the memory requirement for storing the
parsing table, many LR(1) states can be merged w/o
causing parsing conflicts. The YACC (or bison) tool

31

uses LALR(1) parsing tables.

61

e Given a CFG, if an LALR(1) parsing table can be
constructed w/o parsing conflicts, then the CFG is
called an LALR(1) grammar.

e Rarely can one write a large LALR(1) grammar cor-
rectly in one attempt. YACC may complain about
parsing conflicts, and the grammar writer then needs
to (1) specify how to force a parsing action, or (2)
modify the grammar so it becomes LALR(1).

e This is the main reason for understanding the con-
struction of LALR(1) parsing table, even if one does
not plan to write a parser-generator.

e LR(k) items are constructed by carrying along k

iré

lookahead.

e We will carefully look at how to determine the single
look-ahead token in LR(1) states construction.

1¢

e There exist examples of grammars which generate
SLR parsing conflicts, but which can be parsed by
canonical LR(1) parsers without parsing conflicts.

e Consider this example [Aho, Sethi, Ullman88|:

S — S
S— L=R
S— R
L — xR
L — id
R— L

GG

Construction of the LR(1) Parsing Table

Given: an augmented grammar G.
Output: 1) A set of states, each associated with a set
of items; 2) An action table and a goto table.
Making the Action Table
1. If state S7 transits to Sy on token x, then
Action[S1, x] = (shift,S59).
2. If state S| contains a completed item [A — Je,
t], then Action[S], z] is (reduce,n),
where n is the index of the production rule A — 3 in
the grammar.
3. If Sy contains the completed item S’ — S,
where S’ is the new start nonterminal and S the old

€C

start nonterminal, then
Action[S,eof] = accept.

The Goto Table is built in a similar way to the Action
Table.

Ve

Constructing an LALR(1) Table

1. ldentifying the core of each state

2. If two states have the same core, then they are
merged into one state. Two items of the same core are
merged into one, taking the union of their lookahead
sets.

3. Modify the state transitions:

If S1 is merged into 17, So is merged into 15, and
S, — S5, then make 77 —* Tb.

4. Update the action table.

It is easy to prove that if sy & so and s3 — 3y,
S1, S3 are merged into 17, then s9, s4 must be merged
into 15. The reason: s and s4 must have the same

Gc

cores.
No new shift-reduce conflicts may result from the merger.
But new reduce-reduce conflicts may result.

[\)
D

Upper Bounds on the Number of States
SR o#ofLR(0)items
SLR is simply LALR(1) with each lookahead set re-
placed by the FOLLOW set of the left-hand side nonter-

minal. The state construction is more straightforward,

because no look-aheads are traced.
Canonical LR(1) 2o/ LE(O)items o oztofterminals

LALR(1) — same as SLR.

LC

Exercise 1

< expr >—— < expr >+ <term >
|< term >

< term >— < term > *x < factor >
|< factor >

< factor >— id | const | (< expr >)

Exercise 2

< factor >— ID | const | (< expr >)
| ID(< expr list >)
| ID.ID

Abstract Syntax Tree (AST)

e Each program unit (a function, a subroutine, or a
method) can be represented by a list of executable
statements.

e The operations within each executable statement
can be represented by a tree whose root represents
the statement itself.

e Each leaf in a tree is a scalar operand which may be
a scalar ID (represented by a pointer to the symbol
table) or a constant (represented by the constant
value or a pointer to the constant pool, which is a
part of the symbol table).

e The children of a node representing a control state-
ment may be a pointer to a list of executable state-
ments.

— Expressions (incl. ALU ops, references to scalars,
array elements, structure fields and so on.)

— |F statements

— Loops

— Function calls

— (Others)

Semantic Actions

The compiler generates code according to the program-
ming language’'s semantic rules, such as

e data types (and hence operation types).

® execution order.

Generally speaking, semantic actions are tasks performed
by the compiler to determine semantic meanings of each
syntax constructs in the program.

In modern compilers, part of the semantic actions are
interleaved with the parsing steps. These semantic ac-
tions do two things:

e collect attributes of identifiers and store them in a
symbol table.

e construct the AST and linking the IDs to the symbol
table.

After parsing, additional semantic actions are performed,
including

e [ype checking

e Allocate memory for variables

Al

Semantic Actions in Bottom-up Parsing

e The method of interleaving semantic actions with

parsing steps is called Syntax-Directed Transla-
ton.

e The compiler performs semantic actions to propa-
gate semantic attributes.

e Semantic records are used store semantic attributes

which are needed to build the symbol table and the
AST.

e We now study how semantic actions are performed
in bottom-up parsing.

a1

e In bottom-up parsing, semantic actions are always
performed when a reduction is performed.

e A semantic stack is maintained during parsing to
temporarily store the semantic records. Each seman-
tic record in the stack corresponds to a state in the
parsing stack (therefore it matches a grammar sym-

bol).

91

Consider the following example:
< var_decl >— int < tnit od list > ;

float < tnet ed list > ;
< tnitad_list >— < init_id >
< it ad list >, < anit ad >
< nit_id >— ID = const

ID
Note that here we changed < init_id >— ID =

< relop_expr > to < init_ad >—— ID = const, for
simpler illustration.

Let us draw the parsing tree for “int a = 100, b, ¢;”
and let us mark the order of the reductions.
In our example, each ID is annotated by its value if

L1

initialized.

Each nonterminal, < it 1d > or < wnit 2d list > is
annotated by a list of IDs.)

Each ID is represented by a node which has ID.lexeme
and |D.value.

Now let's see how the semantic stack is maintained
during LR(1) parsing.

Finally, let's consider how to write the semantic actions
for each grammar rule.

31

< var_decl >— int < tnit_ad list > :

{For each ID in < init id list > list,

if an entry exists in symtab at current
scope-level, report an error.

If ID.value is defined but is not of integer
type, report an error.

Otherwise, new_entry =
insert(ID.lexeme, symtab),

new_entry — type := int,

new_entry — value := ID.value. }

float < inat_ed_list > :

61

< tnit ad list >—— < init ad >

< init id >—

{< init id list > .list := < init id >.list.}
|< init id list >, < init id >

{Append < init_id > list to
< init id list >.list. }

ID = const

{< init_id > list :=
make_node(ID.lexeme, value(const)); }
| 1D

{< init id > list :=

make node(ID.lexeme, undefined); }

iré

e |n parser-generator tools, such as YACC, a compiler
writer embeds semantic actions in the production
rules.

e A YACC-generated parser automatically maintains a
semantic stack.

e The compiler writer, however, must define the type,
YYSTYPE, of the semantic records. (lts default type
is integer in yacc.)

e Normally, YYSTYPE is defined as a pointer to a
structure (which stores the semantic attributes.) (For
a detailed example, see YACC Example 3 on the class
web site.)

1¢

e In the YACC source code, within each semantic ac-
tion code segment, the semantic record associated
with each right-hand side grammar symbol is re-

ferred to as $1, $2, and so on. These are of the type
YYSTYPE.

e [he semantic record of the left-hand side nontermi-
nal is referred to as $$. (Also of type YYSTYPE.)

e |t is the compiler writer's responsibility to specify, in
the semantic actions, how to assign values to $$.

e When the parser shifts a token, the yylval of the
token is pushed to the stack automatically.

e [he compiler writer must declare the global variable

GG

yylval to be of the YYSTYPE type.

e The compiler writer is responsible to assign a se-
mantic record to yylval in the [ex source code, as
a semantic action performed when a token is recog-
nized.

	502bottomup.pdf
	502bottomup
	hierarchy-parsers
	bottomup
	LRparsing.pdf
	4topdown
	bottomup
	LR0States
	bottomup
	SLRstates
	SLRtable
	bottomup
	4topdown
	bottomup
	bottomup
	LRparsing.pdf
	4topdown
	bottomup
	LR0States
	bottomup
	SLRstates
	SLRtable
	bottomup
	4topdown
	bottomup
	bottomup

	LRparsing.pdf
	4topdown
	bottomup
	LR0States
	bottomup
	SLRstates
	SLRtable
	bottomup
	4topdown
	bottomup
	bottomup

	Semantics
	6AST
	6symtab
	7Activation
	MIPSexamples
	GCC

