The second example of constructing a
bottom-up parser

e Given the following production rules that define

expressions:
5. E" =2 <expr>
6. <expr> > <expr> + <term>
7. - <expr> - <term>
8. <term> —> (<expr>)
9. =2int
10. <expr> =2 <term>

e NOTE: we construct the LR(0) states next, but leave the
parsing table construction and parsing examples to
students as exercises.

We derive the LR(0) states

S1: E' > . <expr> (goto S2, S3, S4, S5)
<expr> = . <expr> + <term>
<expr> = . <expr> - <term>
<expr> = . <term>
<term> = .int
<term> > . (<expr>)
S2:E’ = <expr>. (accept?) (goto S6, S7)
<expr> > <expr> .+ <term>
<expr> > <expr> . - <term>
S3: <expr> =2 <term>. (r10)
S4: <term> > int. (r9)
S5: <term> = (. <expr>) (goto S8, S4, S5, S3)
<expr> = . <expr> + <term>
<expr> = . <expr> - <term>
<expr> = . <term>
<term> = .int
<term> > . (<expr>)
S6: <expr> > <expr> + . <term> (goto S9, S4, S5)
<term> = .int
<term> > . (<expr>)

S7: <expr> > <expr> - . <term> (goto S10, S4, S5)
<term>—> .int
<term> 2> . (<expr>)
S8: <term> 2> (<expr>.) (goto S6, S7, S11)
<expr> = <expr>. + <term>
<expr> = <expr>. - <term>
S9: <expr> > <expr>+ <term>. (r6)
S10: <expr> > <expr>- <term>. (r7)
S11: <term> > (<expr>). (r8)

The parsing table we constructed in class

id = int S L <stmt> <expr>
1 s2 g8 g/
2 s3
3 s4 g5
4 r5 5 5 5 5
5 s6
6 rd r4 r4 r4 r4
7 s2 r2 g9 g7
8 acc
9 r3 r3 r3 r3 3

NOTE: r5 means using rule 5 to reduce; acc means accept the input;
From this table, one can draw the state diagram that has circles and edges,
which we omit here.

Details in each state

We constructed our parsing table based on “items” we found in
each state and deduce all possible transitions.

If a transition leads to a set of items (including the closure) that
hasn’t appeared before, we create a new state.

All transitions from the same state and labeled by the same symbol
must have the same state as the target!

State numbering is arbitrary. In the future, we examine each state,
for which we haven’t examined the transitions yet, one by one,
creating new states as needed. We keep a work list to store the new
states. Removing a state from the work list at a time.

For this example, we introduce new states in “depth-first” manner
instead, in order to explain the state transitions in terms of an input
example.

The state tables built “depth-first” and “breadth-first” will be
equivalent, differing only in the state numbering.

Applying the parsing table to an input example

The parser maintains a parsing stack to store the history of shifts , reduces and gotos.
Giveninput: “a=3; b =0;"

— Stack -- next token position
- 1 -Na=1;b=0;
- 12 -ar=1;,b=0;
- 123 —-a="1;b=0;
- 1234 (r5) -a=1";b=0;
- 123 (g5)

— 1235

— 12356 (rd) -a=1;2b=0;
- 1 (87)

- 17

- 172 -a=1;b"r=0;
- 1723 —-a=1,b=20;
- 17234 (r5) —-a=1b=0";
- 1723 (g5)

— 17235

— 172356 (rd) -a=1b=0; 7
- 17 (g7)

- 177 (r2)

- 17 (89)

- 179 (r3)

- 1 (8)

- 18 (acc)

