How to we resolve parsing conflicts in SLR
parsing tables?

Recall our grammar
and its parsing table for
a list of simple
assignment statements

1. <program>—2> L

2. L2 <stmt>
3. -2 <stmt> L
4., <stmt>—2>id=
<expr>;
5. <expr> -2 int
How do we

determine the
reduce actions?

O 00 N o U A W N -

s2

r5

r4
s2

r3

s3

r5

r4

r3

s4
r5

r4

r3

r5
s6
r4

r3

g8
r5
r4
r2 g9
acc
r3

<stmt> <expr>

Applying the parsing table to an input example

Let us exam the situations in which parsing conflicts may occur,
given input: “a=3; b =0;"

The states in the parsing stack imply the current right-most
derivation step in reverse

— Stack -- next token position
-1 --Ma=1;b=0;

— 12 -a”r=1;b=0;

— 123 —-a="1;b=0;

— 12id3=4int (r5) —-a=1";b=0;
then

— 123 (g5)

— 12int3 =5 <expr>
— 12int3=5<expr>6; (r4) -—a=1;"b=0;

Applying the parsing table to an input example

- 1(g7)
— 17 <stmt> --a=1;"b=0;
e Then
— 17<stmt>2id why shift instead of reduce?
— 1723
— 17<stmt>2id3=4int (r5)
— 1723 (g5)
— 17235
— 17 <stmt>21id3=5<expr>6; (rd) --a=1,b=0; 7
- 17 (87)
e Then
- 17<stmt>7 <stmt> (r2) why reduce here?
- 17 (g9)
— 17<stmt>9L (r3)
- 1 (8)
— 18L (acc)

- 1 <program>

* Imagine if we instead of doing shift to S2 as
follows
— 17 <stmt> 2 id

e We did reduce L 2 <stmt>, then next we had
-1 (g8)
—18L -a=1;"b=0;

— 18 L The only possible action would be to accept, which
would be incorrect because we still have terminals in the
input.

FOLLOW sets

 From the example, we see that at any parsing step, the
result of concatenating the parsing stack with the
remaining input is a result of a sequence of rightmost
derivation steps starting with <program>

e The key question to resolve the potential shift/reduce
conflict is:
— Whether it is possible for id to follow L in the parsing stack

— Thatis, whether it is possible for “L id” to appear in any
derivation steps starting from <program>

— A more general question: What could follow L in any possible
derivations starting from <program>

e The FOLLOW sets are computed to answer such a question.

Computing the FOLLOW sets for our
example grammar

Initialize the FOLLOW sets to empty for all non-terminals except
<program>

FOLLOW(<program>) = {S}
From <program> = L, we get FOLLOW(L) containing S
From L = <stmt>, we get FOLLOW(<stmt>) containing S

From L = <stmt> L, because FIRST(L) contains id only (meaning L =
id), we add id to FOLLOW(<stmt>)

From <stmt> =2 id = <expr> ; we get FOLLOW(<expr>) containing “;”

We iterate the above and find nothing new to add to any of the
FOLLOW sets. The final results:

FOLLOW/(<program>)=FOLLOW(L) = {S}
FOLLOW(<stmt>) = {S, id}
FOLLOW(<expr>) = {;}

* FOLLOW(<stmt>)={S,id} means that

— there exists a sequence of derivations <program> =2 ...
..<stmt>S
 Which means it is a valid parsing situation to have <stmt> on top of
the stack but all input have been exhausted.
— There also exists a sequence of derivations <program> - ... 2
.. <stmt>id ...
 Which means it is a valid parsing situation to have <stmt> id to appear
on the top of the parsing stack
— Itis aninvalid parsing situation to have <stmt> and a non-id
terminal to appear together in any derivations starting from
<program>
— Therefore, it is an invalid parsing situation to have <stmt> on top
of stack but the remaining input is a nonempty string beginning
with a non-id terminal.

e FOLLOW(L) = {S} means that
— there exists a sequence of derivations:

e <program>=> ..~ ..LS
e Which means it is a valid parsing situation to have L on top
of the stack but all input have been exhausted

— It is an invalid parsing situation to have L and any
terminal to appear together in any derivations starting

from <program>
— Therefore it is an invalid parsing situation to have L on
top of the parsing stack, with a nonempty remaining

input.

Resolving parsing conflicts

 |nstate S7, we dor2, i.e. reduce based on “L 2
<stmt>.” if and only if the next inputis S
— We do shift if next input is id
— Everything else is an error situation

* Although other states do not present conflicts,

we can refine the table for “earlier error
detection” based on FOLLOW sets

— In S4, r5 is performed when next input is “;
— In S6, r4 is performed when next input is S or id
— In S9, r3 is performed when next input is S

— In S8, accept is performed when next input is S

The SLR parsing table based on the
FOLLOW sets and the state diagram

id = int S L <stmt> <expr>
1 s2 g8 g7
2 s3
3 s4 g5
4 r5
5 s6
6 rd r4
7 s2 r2 g9 g/
8 acc
9 r3

Consider an incorrect input

Let us exam the parsing actions under input: “a=3 b =0;"
which misses “;” between two statements

— Stack -- next token position

-1 ~-Aa=1b=0;

— 12 —-ar=1b=0;

— 123 —-a="1b=0;

— 12id3=4int —-a=1"b=0;

Based on the old parsing table, we do r5 and have

— 12id3= (g5) ~a=1A b=0;

— 12int3=5<expr> We find error because there is no

action in S5 under input id

Under the new parsing table

* Let us exam the parsing actions under input: “a=3 b =0;"
which misses “;” between two statements

— Stack

1

12

123
12id3=4int

-- next token position
-Na=1b=0;
—-atr=1b=0;
—-a="1b=0;
—-a=1" b=0;

 |n S4, we do not have an action for id as the next token,
we detect the syntax error earlier.

e This is a subtle difference from the previous parsing table
and, in today’s compiler, is not so important an
improvement

The underlying concepts and algorithms leading
to the computation of FOLLOW sets

A grammar symbol is said to be if it can
eventually derive null

 To compute nullability for all symbols in a
grammar:

— Initially assume all symbols A to be nonnullable

— Repeat the following until there is no change to the
nullability of any A
e For each production rule A = <right-hand side>

— If right hand side is €, then mark A as nullable.

— If right hand side is X1X2 ... Xn and all Xi is nullable, then mark A as
nullable.

Example of nullable symbols

<param_list>—> € <param list>is nullable
<stmt_list> 2 <stmt>

<stmt_list> 2 <stmt_list> <stmt>

<stmt> 2 € <stmt> is nullable
<stmt> = id = <expr>;

In second iteration, we find <stmt_list> to be
nullable because <stmt_list> 2 <stmt>

The FIRST sets

e Suppose a is a string of tokens and
nonterminals. By expanding the nonterminals
in @, various strings can be derived.

— FIRST(a) is the set of tokens each of which can
become the leading token in some string derived
from a.

— If a=>¢,then we say a is nullable.

How to compute FIRST sets?

For each nonterminal A, initialize FIRST(A) to empty.
For each terminal a, define FIRST(a) ={ a }.
Repeat the following until there is no change to the

FIRST(A) set for any A:

— For each production rule p: A = <right-hand side>

e If the right hand side is X1X2 ... Xn, add FIRST(X1) to FIRST(<right-
hand side>).

— For each i such that X1 through Xi-1 are all nullable, add
FIRST(Xi) to FIRST(<right-hand side>).

— Add FIRST(<right-hand side>) to FIRST(A)

Define FIRST(p) = FIRST(<right-hand side>), where
p—2><right-hand side> is a production rule

The FOLLOW sets

e Given a nonterminal A, FOLLOW(A) is the set of
terminals each of which can immediately follow A in a
certain sentential form

e How to compute the FOLLOW sets?

— Place S in FOLLOW(S), where S is the start nonterminal of
G, S is the end marker for the input. Initialize FOLLOW(B)
as empty for all other nonterminal B.

— Examine each production, p, in G. For each nonterminal B
which appears in the right-hand side of p,

— suppose p is in the form of A => a B B, add FIRST(B) to
FOLLOW(B). In addition, if B is null or nullable, then add
FOLLOW(A) to FOLLOW(B).

Revisit he second example of constructing
a bottom-up parser

e The grammar:
5. E' = <expr>
6. <expr> =2 <expr> + <term>
7. - <expr> - <term>
8. <term> 2> (<expr>)
9. -2 int
10. <expr> =2 <term>

e FOLLOW(F’) = {S}
e From rule 5, FOLLOW(<expr>) contains $

e From rule 6, FOLLOW(<expr>) contains + and FOLLOW(<term>)
contains FOLLOW/(<expr>), i.e. {S,id}

e From rule 7, FOLLOW(<expr>) is now {S,+,-} and FOLOW/(<term>)
is also {S,+,-}

* From rule 8, FOLLOW(<expr>) is now {S,+,-,)}
e From rule 10, FOLLOW(<term>) is now also {S,+,-,)}
* Another iteration of above will find nothing new to add.

Resolving potential conflicts

e The only place in which a potential conflict exists is state
S2

e S2:E' = <expr>. (accept?) (goto S6, S7)
<expr> => <expr> .+ <term>
<expr> => <expr>. - <term>

But because FOLLOW(E’) = {S}, we accept if and only if we
reach the end of the input

e Like in the previous example, we can refine the parsing
table further by finding the valid inputs in states that
have only reduce items:

e S3:<expr>—> <term>. (r10under{S,),+,-})

e S4:<term>-> int. (r9under{sS,),+-})

e SO:<expr> = <expr>+ <term>.(r6 under {S,),+,-})

e S10: <expr> = <expr>- <term>. (r7 under{S,),+,-})
e S11:<term>—>(<expr>). (r8under{S,),+-})

The SLR parsing table based on the FOLLOW sets and
the state diagram

O 00 N o U»u1 B W N B

= e
L O

int

s4

s4
s4
s4

(
s5

s5
s5
s5

+

s6
r10
r9

s6
ré
r7
r8

s/
r10
r9

s/
ré
r7
r8

S

acc
r10
r9

ré
r7
r8

)

r10
r9

s11
ré
R7
r8

<term> <expr>

g3 g2
g5

g3 g8

g9

gl0

