A grammar that is not SLR but is LR(1)

 The following example is the same as the non-SLR
grammar example in the textbook and the previously

“u,n

posted bottomup.pdf file, except for the “;” symbol

added to the right-hand side of rules for S.
1.S> L=R;
2.S2R;
3.L> 1D
4.1 *R
5.RD>L

NOTE: Here L implies the “left value” and R implies the “right value”,
as used in programming language definitions.



e To show the given
grammar to be not SLR,
we only need to

examine the following >lgoestos2onlL.
two LR(0) states. From S L=R, we know
e S1: Follow(L) includes “=“.
e S>.L=R
e S2>.R From L =2 * R, we know that
e L. ID Follow(L) is a subset of
e > *R Follow(R) .
« R>.L
] Because the FOLLOW set of R
. Sz- . o“__u
contains “=“, we have a
*S2>L.=R shift/reduce conflict in S2 due

R 9 L . to input “_u



We now compute LR(1) states

e S1:

e S2:

S=2>.L=R;
S=2>.R:
L—=>.I1D
L2>.*R
R=>.L
L—=>.ID
L2>.*R

S=2>L.=R;
R->L.

{S}
{S}
{=}
{=}
{;}
{;}
{;}

{S}
{;}

We use colors to highlight how
the look-ahead symbols are
determined, e.g. “="is the
look-ahead for the first
appearance of L =2 . ID,
because LisfromS—=> .L=R;

In S2, we copy the look-ahead
{S} forS=> L.=R; fromS~>
.L=Rin S1, and we copy the
look-ahead {;} forR = L. from
R—>.LinS1.

We perform reduceR 2 L.

u.n

only if the next token is “;

We no longer have the
shift/reduce conflict.



