
Chapter 5: Semantic Actions

Constructing ASTs for expressions

• mknode(op, left, right)

• mkleaf(id, entry)

• mkleaf(num, val)

• A bottom-up translation scheme

– the parser stack,

– the semantic stack,

– the semantic actions to allocate and link the tree
nodes

1



Types

• At the machine level, different instructions (oper-

ations) may use different machine-level represen-
tation for their operands. E.g. integer arithmetic

ops vs. floating point arithmetic operations.

• Therefore, at the machine level, data have types,
which determine how they are stored in the mem-
ory and which registers can store them (fixed point
vs. floating point, 32 bits vs. 64 bits, e.g.)

• Determination of a type (of a data item or an op-
eration) is called binding (of the data item or the
operation).

2



• A type can be determined during the program exe-

cution (dynamic binding, or late binding), or when

the program is compiled (static-binding).

• Static binding usually makes the machine code much

more efficient than late binding, but dynamic bind-

ing makes the source code more flexible.

• Types of primitive operations (such as arithmetic

operations) are usually inferred from the operand

types, without explicit type specification. This is

called overloading.

• High-level operations, e.g. function calls, may also

be overloaded, e.g. in C++.

3



• High-level data types, e.g. structures, make pro-

grams more structured.

4



Type Rules

• Whether every name (ID) must be declared explic-

itly.

• What names have predefined meanings (e.g. in-
trinsic functions.)

• What is the scope (name scope) in the program in

which a declaration applies.

• Type conformance: what data types must the operands

of an operation have. (Also, how many parameters

for a particular function?)

• Type coercision: what are the implicit rules to

transform a data type into another such that operands

5



are type-conformant.

• Can a data item be declared more than once in

exactly the same scope?

6



What does the compiler need to do?

• In each executable statement, for every ID, deter-

mine whether it has been properly declared unless

it is an intrinsic function name.

• In each declaration statement, make sure each programmer-

defined type name has been properly declared.

• Make sure each function call has the proper number

of parameters.

• If the type rules require so, then

– make sure logical operations use integer operands,

– make sure IF and WHILE conditions are inte-

gers, etc.

7



The Symbol Table is the information clearing-house for
type-checking.

• Entries of type information are inserted when dec-

laration statements are parsed.

• Entries are retrieved when executable statements

are parsed.

• The top-level organization of the symbol table (how
to deal with nested blocks):

– A central table: A linked list for each ID.

– A tree of sub-tables.

– A stack of sub-tables.

8



∗ Disadvantage of using a stack of sub-tables:

does not support code generation based on

global program information. All right for code

generation for individual blocks.

• Some entries can be inserted (initialized) before pars-

ing, e.g. intrinsic functions.

• Each ID has a class attribute: a variable, a type,
an intrinsic function?

• Each variable may have an initial value.

• A structure has an attribute of the number of fields
and a sub-table for these fields.

• An intrinsic function has an attribute of the num-

9



ber of parameters and a sub-table for these param-

eters.

• The symbol table may be sorted by ID names or

may use a hash table.

1
0


	semantics.pdf
	Semantics.pdf
	6AST
	6symtab
	7Activation
	MIPSexamples
	GCC



