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Garbage Collection

Two ways to manage the heap:
e Manual (malloc, free, mmap, etc...)
e Pros: Fast, easy for compiler, obvious semantics
e Cons: Difficult to use, impossible* to make safe
e Automatic (e.g. garbage collection)
e Pros: Safe, easy for programmer

e (Cons: Unpredictability, can be slow
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X.bar () ;

X = null;
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GC ldeas

e Want to free memory we no longer need

e Estimate this by reachability:

public void foo() { .
FOO X = new Foo(), AX St'” IN USe,

“« cannot free
X.bar () ; X unused, but
T reachable

X = null;

- X unreachable,
} can be freed




Reachability

Reachability starts from the “roots”:
e Stack and global variables

Roots themselves are managed separately:
e Stack in activation frames

e (Global variables persistent
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Reachability is transitive:

Stack Heap

X
N Foo / Bar
| controller

GC’s job is to reclaim this space!|
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Collection

When do we perform collection?

As infrequently as possible!

(Typically, when we allocate with no free space)



Mark and Sweep




Mark and Sweep

e The heap Is a graph, so:
e Do a depth-first search to mark reachable objects

e |terate over heap to sweep unreachable objects
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Algorithms

Mark:
e Depth-first search of heap
e Mark reachable nodes
Sweep:
e for each object in heap,
e if marked, unmarked

e ¢lse add to freelist
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e Amortized ~ (R+H)/(H-R)



Complexity

Mark

\

e O(R+H)
e R:reachable objects

e H: size of heap

e Amortized ~ (R+H)/(H-R)



Complexity

Mark Sweep

\ /

e O(R+H)
e R:reachable objects

e H: size of heap

e Amortized ~ (R+H)/(H-R)



Complexity

Mark 7eep
e O(R+H) GC frequency = free space

e R:reachable objects
e H: size of heap

e Amortized ~ (R+H)/(H-R)



Implementation




Implementation

How do we store the state of our depth-first
search?

e Runtime stack: Too much recursion!
e EXxplicit stack: Allocated where?

e “Pointer reversal’: Use the objects we’re scanning
as the stack!
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Why M-and-S¢@

Pros:

e Doesn’t move objects
e Straightforward
Cons:

e Memory fragmentation

e Can be costly
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Advanced

e Rarely have one freelist, use an array of object
sizes

e Sweep can be O(1) by keeping objects on an
alloclist

e Objects don’t move
e |nterior pointers

e (Conservative collection
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Two-Space Copying

Keep two separate heaps

e “From” space and “to” space

Only allocate on one heap at a time
Instead of marking, copy to other heap

Redirect all pointers to new heap
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Algorithm

e 1st copy objects referenced by roots

e \When copying an object, leave a forwarding
pointer in old heap

e Then follow heap references



Complexity

Copying?!

Isn’t that expensive?!



Complexity

* O(R)
e No ‘H’ factor
e (But we’ve hidden a larger constant)

e Amortized cost ~ (R)/(H/2-R)



Pros

e Objects with pointers to each other are compacted
(good locality)

e Sweep phase is free, no O(H) phase
e Allocation is trivial
e No freelists

e Just increment a pointer



Cons

e Copying is slow
e Wasting half of heap

e Moving objects is error prone



Generational GC
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Generations

Weak generational hypothesis:

e Most allocated objects die young.
Empirically:

e (1) 80-95% of objects die young

e (2) most remaining objects have very long lives



Generational GC

Separate the heap into n generations G(0)...G(n-1)
(Typically n=2)

Allocate in G(0)
Collect G(x) more frequently than G(x+1)

Long-surviving objects in G(x) moved to G(x+1)



Tracing G(O)

e Do smaller, shorter collections: Trace only G(0)

e ... but what if the only pointer to an object in G(0)
isin G(1)?

e Need a write barrier to remember objects in G(1)
with pointers to G(0)



Why Generational?

Pros:

e Usually only collect G(0)

e [Fast because most objects are dead
e | ocality, sweep, allocation benefits of copying
Cons:
e Tracing more complicated
e Pointers from G(x+1) to G(x), write barrier

e Need separate GC for oldest generation
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Allocation

Manual memory management:

e Allocation just a function call (malloc)
Automatic memory management:

e Can’t collect mid-allocation (state inconsistent)

e Must assure that references to allocated objects
are known



Collection




Collection

Manual memory management:

e free is just a function call



Collection

Manual memory management:
e free is just a function call

Automatic memory management:
e Must occasionally be in a safe state for collection
e Preemptive: Can pause at any point

e Yield-point based: Can pause only at compiler-
generated points
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Codegen

Manual memory management:

e Pointers are just integers!
Automatic memory management:

e Pointers must always be correct

e | ocations of pointers must be known

e May need a write barrier
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Summary

Languages with references can GC
GC families: mark and sweep, copying
GC choices affect allocation, predictability, ...

Using a GC affects codegen, but is easier for
programmers



