Photo source: http://www.flickr.com/photos/joyoflife/ 101479550/ CC-By-NC-SA



http://www.flickr.com/photos/joyoflife/101479550/
http://www.flickr.com/photos/joyoflife/101479550/

Garbage Collection



Garbage Collection

Two ways to manage the heap:



Garbage Collection

Two ways to manage the heap:

e Manual (malloc, free, mmap, etc...)



Garbage Collection

Two ways to manage the heap:

e Manual (malloc, free, mmap, etc...)

e Pros: Fast, easy for compiler, obvious semantics



Garbage Collection

Two ways to manage the heap:
e Manual (malloc, free, mmap, etc...)
e Pros: Fast, easy for compiler, obvious semantics

e Cons: Difficult to use, impossible* to make safe



Garbage Collection

Two ways to manage the heap:
e Manual (malloc, free, mmap, etc...)
e Pros: Fast, easy for compiler, obvious semantics
e Cons: Difficult to use, impossible* to make safe

e Automatic (e.g. garbage collection)



Garbage Collection

Two ways to manage the heap:
e Manual (malloc, free, mmap, etc...)
e Pros: Fast, easy for compiler, obvious semantics
e Cons: Difficult to use, impossible* to make safe
e Automatic (e.g. garbage collection)

e Pros: Safe, easy for programmer



Garbage Collection

Two ways to manage the heap:
e Manual (malloc, free, mmap, etc...)
e Pros: Fast, easy for compiler, obvious semantics
e Cons: Difficult to use, impossible* to make safe
e Automatic (e.g. garbage collection)
e Pros: Safe, easy for programmer

e (Cons: Unpredictability, can be slow



GC ldeas

e Want to free memory we no longer need

e Estimate this by reachability:

public void foo() {
Foo x = new Foo();

X.bar () ;

X = null;



GC ldeas

e Want to free memory we no longer need

e Estimate this by reachability:

public void foo() { .
FOO X = new Foo(), AX St'” IN USe,

« cannot free
X.bar () ;
X = null;



GC ldeas

e Want to free memory we no longer need

e Estimate this by reachability:

public void foo() { .
FOO X = new Foo(), AX St'” IN USe,

« cannot free
X.bar () ; X unused, but
<=
= null- reachable



GC ldeas

e Want to free memory we no longer need

e Estimate this by reachability:

public void foo() { .
FOO X = new Foo(), AX St'” IN USe,

“« cannot free
X.bar () ; X unused, but
T reachable

X = null;

- X unreachable,
} can be freed




Reachability

Reachability starts from the “roots”:
e Stack and global variables

Roots themselves are managed separately:
e Stack in activation frames

e (Global variables persistent



Reachability

Reachability is transitive:

Stack Heap

X
N Foo Bar
controller /

Baf




Reachability

Reachability is transitive:

Stack Heap

X
N Foo / Bar
| controller

GC’s job is to reclaim this space!|

=

Baf




Collection

When do we perform collection?

As infrequently as possible!

(Typically, when we allocate with no free space)



Mark and Sweep




Mark and Sweep

e The heap Is a graph, so:
e Do a depth-first search to mark reachable objects

e |terate over heap to sweep unreachable objects



Mark

Stack

Heap

Foo

Bar

Zed

Beta

Baf

Alpha

Gamia




Mark

Stack

Heap

Foo

Bar

Zed

Beta

Baf

Alpha

Gamia




Mark

Stack

Heap

Foo

Bar

Zed

Beta

Baf

Alpha

Gamia




Stack

Bar

Zed

Beta

Baf

Alpha

Gamia




Stack

Bar

VZed

Beta

Baf

Alpha

Gamia




Stack

Bar

Baf

Beta

Alpha

Gamia




Stack

Bar

Baf

Beta

Alpha

Gamia




Stack

Baf

Alpha

Gamia

Beta




Stack

Baf

Alpha

Gamia

Beta




Stack

Alpha




Stack

Alpha




Stack

Alpha




Stack

Alpha




Stack

Alpha




Stack

Alpha




Stack

Alpha




Stack

Alpha




Stack

Alpha




Stack

Alpha




Stack

Alpha




Stack

Alpha




Stack

Alpha




Stack

Alpha




Stack

Alpha




Trash

Na

Freelist




Trash

Na

Freelist




X P» Foo

Trash

Na

Freelist




Heap

Foo

Freelist

Trash

Na




Heap

Foo

Freelist

Baf

Trash

Na




Heap

Foo

Freelist

Baf

Trash

Na




Heap

Foo

Freelist

Zed

Baf

Trash

O




Heap

Foo

Freelist

Zed

Baf

‘rash

Gamia




Stack Heap

X P» Foo

Baf

Bar \\

[N

* »y Gamma
Zed

Freelist




Stack Heap
X P» Foo Bar
B
» \ ar \\
| A
\ / —P» Trash
Trash *V Gamrpa -
- Zed -
Freelist . . / .

Beta




Allocation

Stack Heap

X P» Foo

Baf

Bar
\ —T

WA -

Trash * »y Gamma
Zed

Freelist

Beta




Allocation

Stack Heap

X P» Foo

Baf

Bar
\ —T

WA -

‘rash * »y Gamma
Zed

Freelist

Beta




Allocation

Stack Heap

X P» Foo

Baf

y \ B?r \\

.\ A

T Trash
Trash Gamma

/ Zed

Freelist / /

Beta




Algorithms



Algorithms

Mark:

e Depth-first search of heap

e Mark reachable nodes



Algorithms

Mark:
e Depth-first search of heap
e Mark reachable nodes
Sweep:
e for each object in heap,
e if marked, unmarked

e ¢lse add to freelist



Complexity

e O(R+H)
e R:reachable objects

e H: size of heap

e Amortized ~ (R+H)/(H-R)



Complexity

Mark

\

e O(R+H)
e R:reachable objects

e H: size of heap

e Amortized ~ (R+H)/(H-R)



Complexity

Mark Sweep

\ /

e O(R+H)
e R:reachable objects

e H: size of heap

e Amortized ~ (R+H)/(H-R)



Complexity

Mark 7eep
e O(R+H) GC frequency = free space

e R:reachable objects
e H: size of heap

e Amortized ~ (R+H)/(H-R)



Implementation




Implementation

How do we store the state of our depth-first
search?

e Runtime stack: Too much recursion!
e EXxplicit stack: Allocated where?

e “Pointer reversal’: Use the objects we’re scanning
as the stack!



Why M-and-S¢@




Why M-and-S¢@

Pros:
e Doesn’t move objects

e Straightforward



Why M-and-S¢@

Pros:

e Doesn’t move objects
e Straightforward
Cons:

e Memory fragmentation

e Can be costly



Advanced




Advanced

e Rarely have one freelist, use an array of object
sizes



Advanced

e Rarely have one freelist, use an array of object
sizes

e Sweep can be O(1) by keeping objects on an
alloclist



Advanced

e Rarely have one freelist, use an array of object
sizes

e Sweep can be O(1) by keeping objects on an
alloclist

e Objects don’t move



Advanced

e Rarely have one freelist, use an array of object
sizes

e Sweep can be O(1) by keeping objects on an
alloclist

e Objects don’t move

e |nterior pointers



Advanced

e Rarely have one freelist, use an array of object
sizes

e Sweep can be O(1) by keeping objects on an
alloclist

e Objects don’t move
e |nterior pointers

e (Conservative collection



Two-Space Copying

Photo source: http://www.flickr.com/photos/photophonic/2678678123/ CC-By-NC-SA



http://www.flickr.com/photos/joyoflife/101479550/
http://www.flickr.com/photos/joyoflife/101479550/

Two-Space Copying



Two-Space Copying

o Keep two separate heaps



Two-Space Copying

o Keep two separate heaps

e “From” space and “to” space



Two-Space Copying

o Keep two separate heaps
* “From” space and "to” space

e Only allocate on one heap at a time



Two-Space Copying

o Keep two separate heaps
* “From” space and "to” space
e Only allocate on one heap at a time

e |nstead of marking, copy to other heap



Two-Space Copying

Keep two separate heaps

e “From” space and “to” space

Only allocate on one heap at a time
Instead of marking, copy to other heap

Redirect all pointers to new heap



Two-Space Copying

Stack Heap 1 Heap 2
X > Foo

y Bar
Baf

Bar

Baf

Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2

X -»> Foo

y Bar
Baf

Bar

Baf

Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2

X -»> Foo Foo

y Bar Bar
Baf Baf

Bar

Baf

Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2

X J’L Foo === Foo

y Bar
Baf

Bar

Baf

Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2
’7
X ] I_ Foo === Foo
y Bar
Baf
Bar
Baf
Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2
’7
X ] Foo === Foo
y Bar
Baf
Bar
Baf
Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2
X AT Foo == Foo
y Bar
Baf
L Bar
Baf

Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2
X AT Foo === Foo
y \\ Bar

\ Baf

I_ Bar ==

V¥

Bar

Baf

Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2
’7
X d Foo === Foo
y NG Bar
\ Baf
R
Bar = Bar
Baf

Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2
X AT Foo === Foo
y N Bar

N
\ Baf

Bar

V¥

Bar ==

Baf

Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2
’7
X q Foo = Foo
y N ot Bar1
\ Baf
Bar == Bar
Baf
Baf
Foo
Baz




Two-Space Copying

Stack Heap 1 Heap 2
X AT Foo === Foo
y N Bar

\\ Baf <€

Bar ==

V¥
2

Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2
’7
X d Foo === Foo
y N Bar
\ _t Baf <
Bar = Bar
Baf

Baf === Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2
’7
X d Foo === Foo
y NG Bar
\ Baf
R
Bar = Bar
Baf

Baf =P Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2
’7
X d Foo === Foo
y N Bar
\ Baf
R
Bar = Bar
Baf

Baf =P Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2
’7
X d Foo === Foo
y N Bar
\ Baf
R
Bar = Bar
Baf

Baf =P Baf

Foo

Baz




Two-Space Copying

Stack Heap 1 Heap 2
X AT Bk Foo
y N Bar

\ Baf

Bar

Baf

Baf

Foo




Allocation

Stack

Heap 1

Heap 2

= —

IS

Foo

Bar
Baf

+—Free space




Allocation

Stack

Heap 1

Heap 2

= —

IS

Foo

Bar
Baf

+—Free space




Algorithm

e 1st copy objects referenced by roots

e \When copying an object, leave a forwarding
pointer in old heap

e Then follow heap references



Complexity

Copying?!

Isn’t that expensive?!



Complexity

* O(R)
e No ‘H’ factor
e (But we’ve hidden a larger constant)

e Amortized cost ~ (R)/(H/2-R)



Pros

e Objects with pointers to each other are compacted
(good locality)

e Sweep phase is free, no O(H) phase
e Allocation is trivial
e No freelists

e Just increment a pointer



Cons

e Copying is slow
e Wasting half of heap

e Moving objects is error prone



Generational GC

Photo source: http://www.flickr.com/photos/dino_ olivieri/460053 136/ CC-By



http://www.flickr.com/photos/joyoflife/101479550/
http://www.flickr.com/photos/joyoflife/101479550/

Generations




Generations

Weak generational hypothesis:

e Most allocated objects die young.



Generations

Weak generational hypothesis:

e Most allocated objects die young.
Empirically:

e (1) 80-95% of objects die young

e (2) most remaining objects have very long lives



Generational GC

Separate the heap into n generations G(0)...G(n-1)
(Typically n=2)

Allocate in G(0)
Collect G(x) more frequently than G(x+1)

Long-surviving objects in G(x) moved to G(x+1)



Tracing G(O)

e Do smaller, shorter collections: Trace only G(0)

e ... but what if the only pointer to an object in G(0)
isin G(1)?

e Need a write barrier to remember objects in G(1)
with pointers to G(0)



Why Generational?

Pros:

e Usually only collect G(0)

e [Fast because most objects are dead
e | ocality, sweep, allocation benefits of copying
Cons:
e Tracing more complicated
e Pointers from G(x+1) to G(x), write barrier

e Need separate GC for oldest generation



Compiling for GC




Allocation




Allocation

Manual memory management:

e Allocation just a function call (malloc)



Allocation

Manual memory management:

e Allocation just a function call (malloc)
Automatic memory management:

e Can’t collect mid-allocation (state inconsistent)

e Must assure that references to allocated objects
are known



Collection




Collection

Manual memory management:

e free is just a function call



Collection

Manual memory management:
e free is just a function call

Automatic memory management:
e Must occasionally be in a safe state for collection
e Preemptive: Can pause at any point

e Yield-point based: Can pause only at compiler-
generated points



Codegen




Codegen

Manual memory management:

e Pointers are just integers!



Codegen

Manual memory management:

e Pointers are just integers!
Automatic memory management:

e Pointers must always be correct

e | ocations of pointers must be known

e May need a write barrier



Summary




Summary

Languages with references can GC
GC families: mark and sweep, copying
GC choices affect allocation, predictability, ...

Using a GC affects codegen, but is easier for
programmers



