
Chapter 6: Activation Records

In this chapter, we reinforce the understanding of the
following concepts from a computer architecture course:

• Memory allocation methods for different kinds of
variables.

• Using registers to store local variables and temporary
results.

• Using registers to pass arguments and return results
(for function calls).

• Stack frames (also known as activation records).

• Call/return sequence.

1

From an introductory computer organization course or
an assembly programming course, we know that

• A stack is maintained in the program’s virtual ad-
dress space. Variables local to a function are allo-
cated to the stack frame, also known as the acti-
vation record, of that function.

• Variables and constants which are shared among dif-
ferent functions are allocated elsewhere.

– Variables with fixed sizes known at compile time
are allocated to static locations.

– Dynamic data structures are allocated at run-time
on the heap.

2

A Calling Sequence

The following actions are divided between the caller and
the callee:

1. Evaluates actual arguments and puts values in callee’s
AR.

2. Stores return address in callee’s AR.

3. Stores the caller’s frame pointer register, or called
the caller’s AR pointer, in callee’s AR. (Current AR
pointer is called the control link in callee’s AR.)

4. Modifies the frame pointer %fp, making it point to
callee’s AR.

3

5. Modifies the stack pointer %sp, making it point to the
to top of the stack.

6. Branches to callee’s first instruction.

7. Callee begins execution.

Are there other register contents to be stored? Who
stores them? We will discuss Caller-save vs. callee-
save.

4

A Returning Sequence

1. Caller needs to retrieve the function return value.
How?

2. (In the call-by-value scheme, no return values are
stored in actual arguments.)

3. Restores saved stack pointer for caller (= current AR
pointer).

4. Restores saved register contents for caller.

5. Return to the caller.

5

The memory references required to read and modify the
stack contents can be time consuming. The number of
such memory references can be reduced by using regis-
ters.

• Passing arguments through registers.

– Most functions have few arguments.

– We can use a few registers to pass the arguments.

– The rest of the arguments, if any, can be passed
in the stack frame.

• Returning function’s results through registers.

– We can use another register to return the func-
tion’s result, if any, to the caller.

6

• Carefully considering how to save the register con-
tents.

– If we let the callee save the registers, then a func-
tion needs to save only those registers which it
modifies. Each function will save such registers
at its entry and resture them before the exit.

– If we let the caller save the registers, then a func-
tion needs to save registers only if it calls oth-
ers. Moreover, before it calls another function,
the caller needs to save only those registers whose
values are still needed after the call returns from
the callee. When the call returns, the caller re-
stores the saved registers.

7

• Caller-save and callee-save each has its upside and
downside, so we divide the registers into two groups.

– Callee-saved registers: If function f writes to a
callee-saved register r, then r must be saved to
the stack at the entry of f , and r must be restored
before f exits.

– Caller-saved registers: Suppose f writes to a caller-
saved register r before calling another function g

and suppose the written value in r will be read
again in f after g returns. f must save r to the
stack before calling g and restore r after the call
returns.

8

How to Take Advantage of Caller-Saved/Callee-Saved
Distinction?

• A leaf function (i.e. a function that makes no func-
tion calls) should use as many caller-saved registers
as possible.

• If a function f needs to save a caller-saved register
r1 many times then it is better to use a callee-saved
register r2 for that variable value instead of using
r1. Then f needs to save r2 only once

Obviously, the return-value register must be caller-saved.

9

• MIPS has two v registers for return value and for
expression evaluation

• 4 a registers for passing arguments.

• 10 t registers for temporary values.

• 8 s registers which are callee-saved.

• $gp, $sp, $fp, $ra, $zero

• $k0, $k1 used by the OS kernel

• $at for the assembler.

• Program Example 1: compute factorial(n)

• Program Example 2: sorting

1
0

A MIPS example to show register usage

The C source code:

sort(int v[], int n)
{ int i, j;

for (i=0; i<n; i=i+1) {
for (j=i-1;j>=0 &&v[j]>v[j+1]; j=j-1)
{
swap(v, j);
}

}
}

The assembly code: (see next page)

1

sort: addi $sp, $sp, -20 # make room on stack for 5 registers
sw $ra, 16($sp)
sw $s3, 12($sp)
sw $s2, 8($sp)
sw $s1, 4($sp)
sw $s0, 0($sp)

move $s2, $a0 #copy address of v into $s2
move $s3, $a1 #copy n into $s3

move $s0, $zero # i = 0; beginning of outer loop
for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3

beq $t0, $zero, exit1 # if $t0 = 0 goto exit

addi $s1, $s0, -1 # j = i - 1; beginning of inner loop
for2tst: slti $t0, $s1, 0 # slti uses an immediate operand “0”

bne $t0, $zero, exit2
add $t1, $s1, $s1 # $t1 = j * 2
add $t1, $t1, $t1 # $t1 = j * 4
add $t2, $s2, $t1 # $t2 = v + j * 4
lw $t3, 0($t2) # v[j]
lw $t4, 4($t2) # v[j+1]
slt $t0, $t4, $t3
beq $t0, $zero, exit2

move $a0, $s2 # 1st parameter of swap is v
move $a1, $s1 # 2nd parameter of swap is j
jal swap
addi $s1, $s1, -1 # j = j - 1
j for2tst # jump back to test of inner loop

exit2: addi $s0, $s0, 1 # i = i + 1
j for1tst # jump back to test of outer loop

exit1: # restoring registers
lw $ra, 16($sp)
lw $s3, 12($sp)
lw $s2, 8($sp)
lw $s1, 4($sp)
lw $s0, 0($sp)
addi $sp, $sp, 20
jr $ra

2

GCC Compiler Structure

• Given a C program source code, the command “gcc”
causes cpp and cc1 to run, successively, before as-
sembling, linking and producing the executable.

– cpp – the preprocessor which processes the macros,
comments, etc. A number of library routines in
cpp are called from the parser to recognize tokens.

– cc1 – the C compiler itself.

• Our focus is on cc1, whose main () function is de-
fined in toplev.c.

– After initialization of a bunch of data structures,
compile file(filename) is called for each source
file.

– Within compile file(filename), yyparse() is called
to invoke the parser.

– All the main compilation passes are invoked from
within yyparse() after the parsing.

– After returning from yyparse(), the compilation is
essentially done.

The Parser

• Defined in c-lex.c, yyparse() is a “thin wrapper”
around the real parser yyparse 1() which is defined
in c parse.c.

• The real parser is generated automatically by BISON
from the YACC source file c-parse.y.

– Since BISON names the generated parser “yy-
parse”, GCC renames that function name to yy-

parse 1.

– As usual, the parser gets the tokens by calling
yylex(). In GCC’s case, yylex() is manually em-
bedded in the parser.

– yylex() in GCC actually wraps yylex (), which
in turn simply converts the tokens returned from
c lex () to tokens recognized by the parser.

– The real lexer c lex(), defined in c-lex.c, calls a
number cpp library routines to get tokens.

– The high-level IR trees are generated as a function
body is parsed. The tree construction operations
are defined in tree.c, etc.

– After parsing a whole function, finish function ()

is called to finish the rest of the compilation of
the function. (C.f. c-parse.y.)

The Rest of the Passes

• Defined in c-decl.c, finish function () invokes tree
optimization routines. The high-level trees are main-
tained during the compilation of the entire function,
which is a major improvement from the last version
of GCC.

• finish function () then calls c expand body (), which
generates RTL for the function body before calling
rest of compilation () to perform optimizations on
the RTL.

	RunTimeEnv.pdf
	CS502-Activation.pdf
	6AST
	6symtab
	7Activation
	MIPSexamples
	GCC

	MIPSexampleCorrection
	RunTimeEnv
	CS502-Activation.pdf
	6AST
	6symtab
	7Activation
	MIPSexamples
	GCC

