
CS502: Compilers & Programming Systems

Zhiyuan Li
Department of Computer Science

Purdue University, USA

Low IR and Assembly code generation

• We first discuss the generation of low-level
intermediate code of a program.
– Inside the compiler such a code has its low-level

representation, called low-level internal representation,
or low IR.

• We then discuss the generation of assembly code by
walking through the low-level IR

Motivation of machine independent
representation

• From the MIPS code example shown previously,
we see that the assembly code is heavily dependent
on the specific instruction format of a particular
processor

• We want to perform optimizations on machine
independent representation such that we do not
implement a new set of optimizations for each
particular processor

Differences between Low IR and Assembly Code

• In low IR
– Unlimited user-level registers are assumed. Hence,

• symbolic registers, instead of hardware registers are named as
operands.

– Operators on different data type are overloaded.
• For example, “+” represents both integer add and float add.

– Instructions selected for special cases are abstracted
away.

• For example, a simple load instruction represents loading of a
value, instead of two instructions (loading the high half and then
the low half) as on RISC processors such as MIPS and SPARC.

• Another example is that we simply write R4 * 2 when it could be
done by a potentially less expensive left shift instruction.

Intermediate Code

• A well-known form of intermediate code is called three-
address code (3AC)
– In the “quadruples” form, 3AC for a function is represented by a list

quadruples (dest, op1, op2, op), with “op” being the operation
– An alternative form is a list of “triples” (op1, op2, op) and the index

or the pointer to a specific triple implies the location of the
intermediate result

• When we plug such locations (indices or pointers) to the
operand fields of an operation, we in effect obtain a forest,
i.e. a number of operation trees
– Similar to AST but at lower level

• Usually the internal nodes are intermediate results
that are associated with temporary variable names
(temps) assigned by the compiler
– These are also known as symbolic registers
– They are eventually allocated to hardware registers
– If there are not enough hardware registers, such temp

variables may need to have their values saved to the
activation record of the current function,.

• This is called register spills, to be discussed further later.

• If one exploits common sub-expression
(CSE) s in a basic block, i.e. a code block
w/o branches in or out, then the expression
trees may become directed acyclic graphs
(DAGs).
– The algorithm to identify CSEs uses the value

number:
• The idea is to find isomorphism among sub-trees.

From AST to Low IR

• We shall assume a load-store processor architecture as on
RISC processors.
– As in assembly code, all static memory addresses are symbolic

labels.
– Variables local to a routine are referred to via stack pointer (or frame

pointer) plus an offset.

We assume the following 3AC instruction types:

• ALU operations: Rx = Ry op Rz, Rx = Ry op integer, Rx = integer

op integer, Rx = integer op Rz. (If op is a logical or comparison

operation, then Rx becomes 0 if the result is false and becomes 1

if true.)

• Simple register assignments: Rx = Ry, Rx = integer, Rx = Labely ,

where Labely is a symbolic memory address.

• Load operations: Rx = (Ry), Rx = (Labely), where Labely is a

symbolic memory address.

• Store operation: (Ry) = Rx, (Labely) = Rx,

• Branch operations:

– if Rc goto Labelx (if Rc �= 0 jump to Labelx).

– if Rc goto (Rx) (if Rc �= 0 jump to the address stored in Rx).

– goto Labelx , goto (Rx).

• We assume a few symbolic registers with fixed meanings:
– %pc – program counter.
– %sp – stack pointer.
– %fp – stack frame pointer.

• We assume all labels are inserted as “some ID name :”,
e.g. “L11: R1 = R2 + R3”.

• If a label is followed by a directive “.size n”, then a memory space
of n words is reserved for the static variable named by the label.

For a scalar, n = 1.

Generating Three Address Code

• Three address code (3AC) can be generated directly by
semantic actions.

• But It is easier to construct the AST first and then generate
3AC by traversing the AST.

• In this course, we focus on explaining 3AC for different
kinds of program constructs
– and we skip the traversal procedure and the mechanical

transformation steps

• First consider a basic block, i.e. a sequence of statements
containing no branches.

1. a = (X * Y + Z / 100) * 3;
2. b = a * a + 3.14;
3. c = a * a + b * b;
4. b = b + c;

• Assuming X, Y and Z are global variables statically
allocated, what should the 3AC be for the above C code
segment?
– Consider two cases: (1) a, b, c, d are also globals; and (2) a, b, c, d

are locals which are not static. In the case of (2), we need to know
how the locals are allocated in the AR.

Branches
• Next consider IF statements.
1. if ((a < b) || (c < d) && (e < f))
2. x = 3;
3. else
4. x = 2;
5. y = x * x;

• There are two methods to evaluate the IF condition:
– One is based a full evaluation of the logical condition,
– the other generates jump code to short-circuit the IF condition. The

latter is more commonly used.

• Nested IF statements be treated just the same way

Loops

• Next consider a WHILE loop.
1. i = 100;
2. while ((i > 0) && (x < 10000)) {
3. x = x * x;
4. i = i - 1;
5. }

• Now consider another WHILE loop which contains array
references.

• i = 100;
• while (i > 0) {
• i = i - 1;
• a[i] = b[i] * 3.14;
• }

Function Calls

• Lastly, consider a recursive function call.
• int main() {
• int i;
• i = fibo(100);
• }
• int fibo(int n) {
• if (n < 0) return -1;
• if (n == 1) return 1;
• if (n == 0) return 0;
• return fibo(n-1) + fibo(n-2);
• }

Assembly Code Generation

• Assembly code generation concerns
– (i) instruction selection
– (ii) register allocation

• We first focus on instruction selection
– Register allocation will be discussed in later lectures

• During instruction selection, we will assume the use of
abundant symbolic registers
– During register allocation later, if register spills occur, the assembly

code will be slightly modified by inserting the “spilling code”
– Designation of callee-save and caller-save registers will also affect

the prologue and epilogue

Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

Assumptions in Code Generation

• We assume that the input to the code generator is a
basic block (single entry and single exit) of 3AC
operations, in which no branch operations may occur.

• As stated previously, memory allocation is already
performed and made explicit in the 3AC (e.g. the RTL
in GCC).

• To facilitate code generation, if the 3AC is a non-tree
DAG (directed acyclic graph), then it is first converted
to a forest, (just as in the RTS of GCC).

Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

• The root of each tree can either be
– a memory store, or
– a write to a symbolic register that is live at

the end of the basic block, i.e. to be used
by some operations outside the basic block

• A node in the 3AC may or may not yet have been
labeled by a (symbolic or hardware) register to hold
its value.

• See an illustration

Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

r2 [r8]
r1 [r8+4]
r3 r2 + r1
[r8+8] r3
r4 r1 – 1
[r8+4] r4

In the following 3AC, r8 is assumed to be the stack frame pointer

←

+ +

R8 8 ↑

R8

↑

R8

+

4

R3

R2 R1

←

+ -

R1 1

R4

R1

R8

In the graph, a red ← represents a memory store, a ↑
represents a memory load.
Before generating machine code, the arc representing the common sub‐expression
stored at R1 is deleted, which results in a forest of two trees, both rooted at “←”.

Department of Computer Sciences

• For modern microprocessors, each node in the 3AC can always
find a machine instruction to implement it.

• Often the implementation can have more than one way.
• Moreover, often a single instruction may implement more than

one node in the 3AC.
• Which way is “best”, that is an optimization issue.
• The objective function may vary

– Code size?
– Speed?

Purdue University is an Equal Opportunity/Equal Access institution.

Department of Computer Sciences

• In general, the optimization problem is NP-hard even
if we know exactly the run-time trace of the program
execution

• Instead of performing dynamic programming as
some literature suggests, current compilers usually
traverse the 3AC only a fixed time, e.g. twice.

Purdue University is an Equal Opportunity/Equal Access institution.

Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

In what order should we traverse the tree?

• If bottom-up, do we save r8 + 8 to a register, or we wait till we
find out it is actually part of the memory store operation’s
addressing mode? The latter will results in one fewer instruction
and is better.

• However, if we traverse top down, then we don’t know what
register holds an operand.

• Hence, we take two passes.
– In the top down pass, the tree is partitioned in non-

overlapping tiles, using maximal munch.
– In the bottom up pass, instructions are generated following

the proper execution order of the tiles.

Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

Department of Computer Sciences

• The tree walk and instruction pattern matching can
be implemented by hand in the compiler.

• However, it is more desirable to automate part of the
process, by using some code-generator generator.
One of the attempt in this direction is based on an LR
parsing approach proposed by Glanville and Graham
(not discussed further here).

Purdue University is an Equal Opportunity/Equal Access institution.

	502codegent
	352_Lect11_1_codegen

