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Low IR and Assembly code generation



• We first discuss the generation of low-level 
intermediate code of a program. 
– Inside the compiler such a code has its low-level 

representation, called low-level internal representation, 
or low IR.

• We then discuss the generation of assembly code by 
walking through the low-level IR



Motivation of machine independent 
representation

• From the MIPS code example shown previously, 
we see that the assembly code is heavily dependent 
on the specific instruction format of a particular 
processor

• We want to perform optimizations on machine 
independent representation such that we do not 
implement a new set of optimizations for each 
particular processor



Differences between Low IR and Assembly Code

• In low IR
– Unlimited user-level registers are assumed. Hence,

• symbolic registers, instead of hardware registers are named as 
operands.

– Operators on different data type are overloaded. 
• For example, “+” represents both integer add and float add.

– Instructions selected for special cases are abstracted 
away.

• For example, a simple load instruction represents loading of a 
value, instead of two instructions (loading the high half and then 
the low half) as on RISC processors such as MIPS and SPARC. 

• Another example is that we simply write R4 * 2 when it could be 
done by a potentially less expensive left shift instruction.



Intermediate Code

• A well-known form of intermediate code is called three-
address code (3AC) 
– In the “quadruples” form,  3AC for a function is represented by a list 

quadruples (dest, op1, op2, op), with “op” being the operation
– An alternative form is a list of “triples” (op1, op2, op) and the index 

or the pointer to a specific triple implies the location of the 
intermediate result

• When we plug such locations (indices or pointers) to the 
operand fields of an operation, we in effect obtain a forest, 
i.e. a number of operation trees
– Similar to AST but at lower level



• Usually the internal nodes are intermediate results 
that are associated with temporary variable names 
(temps) assigned by the compiler
– These are also known as symbolic registers
– They are eventually allocated to hardware registers
– If there are not enough hardware registers, such  temp 

variables may need to have their values saved to the 
activation record of the current function,.

• This is called register spills, to be discussed further later.



• If one exploits common sub-expression 
(CSE) s in a basic block, i.e. a code block 
w/o branches in or out, then the expression 
trees may become directed acyclic graphs 
(DAGs).
– The algorithm to identify CSEs uses the value 

number:
• The idea is to find isomorphism among sub-trees.



From AST to Low IR

• We shall assume a load-store processor architecture as on 
RISC processors.
– As in assembly code, all static memory addresses are symbolic 

labels. 
– Variables local to a routine are referred to via stack pointer (or frame 

pointer) plus an offset.



We assume the following 3AC instruction types:

• ALU operations: Rx = Ry op Rz, Rx = Ry op integer, Rx = integer

op integer, Rx = integer op Rz. (If op is a logical or comparison

operation, then Rx becomes 0 if the result is false and becomes 1

if true.)

• Simple register assignments: Rx = Ry, Rx = integer, Rx = Labely ,

where Labely is a symbolic memory address.

• Load operations: Rx = (Ry), Rx = (Labely), where Labely is a

symbolic memory address.

• Store operation: (Ry) = Rx, (Labely) = Rx,



• Branch operations:

– if Rc goto Labelx (if Rc �= 0 jump to Labelx).

– if Rc goto (Rx) (if Rc �= 0 jump to the address stored in Rx).

– goto Labelx , goto (Rx).

• We assume a few symbolic registers with fixed meanings:
– %pc – program counter.
– %sp – stack pointer.
– %fp – stack frame pointer.

• We assume all labels are inserted as “some ID name :”, 
e.g. “L11:   R1 = R2 + R3”.

• If a label is followed by a directive “.size n”, then a memory space
of n words is reserved for the static variable named by the label.

For a scalar, n = 1.



Generating Three Address Code

• Three address code (3AC) can be generated directly by 
semantic actions.

• But It is easier to construct the AST first and then generate 
3AC by traversing the AST.

• In this course, we focus on explaining 3AC for different 
kinds of program constructs
– and we skip the traversal procedure and the mechanical 

transformation steps



• First consider a basic block, i.e. a sequence of statements 
containing no branches.

1. a = (X * Y + Z / 100) * 3;
2. b = a * a + 3.14;
3. c = a * a + b * b;
4. b = b + c;

• Assuming X, Y and Z are global variables statically 
allocated, what should the 3AC be for the above C code 
segment?
– Consider two cases: (1) a, b, c, d are also globals; and (2) a, b, c, d 

are locals which are not static. In the case of (2), we need to know 
how the locals are allocated in the AR.



Branches
• Next consider IF statements.
1. if ((a < b) || (c < d) && (e < f))
2. x = 3;
3. else
4. x = 2;
5. y = x * x;

• There are two methods to evaluate the IF condition: 
– One is based a full evaluation of the logical condition, 
– the other generates jump code to short-circuit the IF condition. The 

latter is more commonly used.

• Nested IF statements be treated just the same way



Loops

• Next consider a WHILE loop.
1. i = 100;
2. while ((i > 0) && (x < 10000)) {
3. x = x * x;
4. i = i - 1;
5. }

• Now consider another WHILE loop which contains array 
references.

• i = 100;
• while (i > 0) {
• i = i - 1;
• a[i] = b[i] * 3.14;
• }



Function Calls

• Lastly, consider a recursive function call.
• int main() {
• int i;
• i = fibo(100);
• }
• int fibo(int n) {
• if (n < 0) return -1;
• if (n == 1) return 1;
• if (n == 0) return 0;
• return fibo(n-1) + fibo(n-2);
• }



Assembly Code Generation

• Assembly code generation concerns
– (i) instruction selection
– (ii) register allocation

• We first focus on instruction selection
– Register allocation will be discussed in later lectures

• During instruction selection, we will assume the use of 
abundant symbolic registers
– During register allocation later, if register spills occur, the assembly 

code will be slightly modified by inserting the “spilling code”
– Designation of callee-save and caller-save registers will also affect 

the prologue and epilogue
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Assumptions in Code Generation

• We assume that the input to the code generator is a 
basic block (single entry and single exit) of 3AC 
operations, in which no branch operations may occur.

• As stated previously, memory allocation is already 
performed and made explicit in the 3AC (e.g. the RTL 
in GCC).

• To facilitate code generation, if the 3AC is a non-tree 
DAG (directed acyclic graph), then it is first converted 
to a forest, (just as in the RTS of GCC).
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• The root of each tree can either be 
– a memory store, or
– a write to a symbolic register that is live at 

the end of the basic block, i.e. to be used 
by some operations outside the basic block

• A node in the 3AC may or may not yet have been 
labeled by a (symbolic or hardware) register to hold 
its value. 

• See an illustration
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r2 [r8]
r1 [r8+4]
r3 r2 + r1
[r8+8] r3
r4 r1 – 1
[r8+4] r4

In the following 3AC, r8 is assumed to be the stack frame pointer 

←

+ +

R8 8 ↑

R8

↑

R8

+

4

R3

R2 R1

←

+ -

R1 1

R4

R1

R8

In the graph, a red ← represents a  memory store, a  ↑
represents a memory load. 
Before generating machine code, the arc representing the common sub‐expression 
stored at R1 is deleted, which results in a forest of two trees, both rooted at “←”.
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• For modern microprocessors, each node in the 3AC can always 
find a machine instruction to implement it.

• Often the implementation can have more than one way.
• Moreover, often a single instruction may implement more than 

one node in the 3AC.
• Which way is “best”, that is an optimization issue.
• The objective function may vary

– Code size?
– Speed?
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• In general, the optimization problem is NP-hard even 
if we know exactly the run-time trace of the program 
execution

• Instead of performing dynamic programming as 
some literature suggests, current compilers usually 
traverse the 3AC only a fixed time, e.g. twice.
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In what order should we traverse the tree?

• If bottom-up, do we save r8 + 8 to a register, or we wait till we 
find out it is actually part of the memory store operation’s 
addressing mode? The latter will results in one fewer instruction 
and is better. 

• However, if we traverse top down, then we don’t know what 
register holds an operand. 

• Hence, we take two passes. 
– In the top down pass, the tree is partitioned in non-

overlapping tiles, using maximal munch.
– In the bottom up pass, instructions are generated following 

the proper execution order of the tiles.
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• The tree walk and instruction pattern matching can 
be implemented by hand in the compiler. 

• However, it is more desirable to automate part of the 
process, by using some code-generator generator. 
One of the attempt in this direction is based on an LR 
parsing approach proposed by Glanville and Graham 
(not discussed further here).
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