
Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

Program Analysis

CS502

Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

• After machine code generation (w/o register
allocation yet), the rest of this course will focus on
compiler-based program analysis

• Such analysis is the foundation for many techniques
that are aimed at
– Program execution efficiency
– Program memory use reduction
– Program reliability enhancement
– Program reliability enhancement

• Debugging, testing, correctness proofs

Department of Computer Sciences

Static analysis
• Analysis conducted at compile time is applied to the code only

– This is called static analysis
• Static analysis discover program properties that are true under

arbitrary input
– It must make conservative assumptions

• What does “conservative” mean depends on the goal of the analysis

• Static analysis may be applied to different levels of internal
representation (IR)

– However, the basic algorithms are usually the same for different levels
– Our discussions in this course will alternately use the source level (AST) and the low

tree level (3AC). NOTE: 3AC is a text dump of the low-level tree
– At a higher level, more information about the data structure is available to the compiler
– At a lower level, finer grain operations are exposed to the analysis, potentially yielding

more “optimization” opportunities

Purdue University is an Equal Opportunity/Equal Access institution.

Department of Computer Sciences

Dynamic analysis
• Analysis based on information collected during program execution

under specific input is called dynamic analysis
• Typically the compiler instruments the program by inserting information

collecting operations
– Such instrumented operations records events that are useful for the dynamic analysis
– The level of details depends on the goal and the intended thoroughness of the analysis
– Examples of collected information: the sequence of instructions executed, the memory

locations visited by (load/store) instructions, the value changes to the variables.

• Dynamic analysis may be performed offline
– The information is recorded in an execution trace (or trace in short) for post-execution

analysis

• It may also be performed online
– The information is analyzed during program execution, e.g. for security purpose or for

“run-time optimization”

Purdue University is an Equal Opportunity/Equal Access institution.

Department of Computer Sciences

• Static analysis is more traditional than dynamic ones
• Dynamic analysis techniques are usually extensions of similar static

techniques
• Therefore, we will begin by discussion of static analysis techniques and

spend most of our time on them
• When an analysis is applied to individual functions independently to

each other, it is called intra-procedural analysis
– This analysis assumes no knowledge from other functions
– It makes conservative assumptions about callees of the function being analyzed and

the current function’s input parameters.

• When the analysis is applied to multiple functions as a whole
(sometime even the entire program), it is called inter-procedural
analysis

Purdue University is an Equal Opportunity/Equal Access institution.

Department of Computer Sciences

Control flow graph
• To support program analysis, the compiler first

partitions the program into basic blocks and build a
control flow graph (or flow graph in short)

• A basic block is a sequence of statements (AST level) or
instructions (3AC level) which contain no branch target except
the first statement (instruction) and no branches except the last
statement (instruction)

– That is, a straight line of code
– There are two extreme approach to basic-block partition, the maximal basic block

(extends the block as far as possible), and the minimum block: single-
statement/instruction basic block

– With maximal basic blocks, the intra-procedural analysis normally requires two steps:
local analysis and global analysis, but the minimum block approach requires only global
analysis

Purdue University is an Equal Opportunity/Equal Access institution.

Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

Example of partitioning of a program
into single-instruction basic blocks :

Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

j = 0;
L1: if j >= 100 goto L2

if (readB) goto L3
t0 = row * size
t1= t0 + j
t2 = t1 * 4
t3 = baseA + t2
v = mem[t3]
goto L4

L3: t4 = row * size
t5 = t4 + j
t6 = t5 * 4
t7 = baseB + t6
v = mem[t7]

L4: t8 = row * size
t9 = t8 + j
t10 = t9 * 4
t11 = baseC + t10
mem[t11] = v
j = j + 1
goto L1

L2:

Loop body is:
If readB

{ v = B[row,j]}
Else

{ v = A[row, j]}
C[row, j] = v;

Example of
partitioning a
program into
maximum basic
blocks

B0 B1

B2

B3

B4

B5

B6

B2

B1

B0

B3 B4

B5

B6

