
Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

Register Allocation
&

Liveness Analysis

CS502



Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

• In IR tree code generation, we use an unlimited 
number of TEMP's for local scalar variables and 
temporary results. 
– In the final assembly code, these TEMP's must be assigned 

to a limited number of hardware registers which can be used 
in the instructions.

• The values of two TEMP's cannot reside in the same 
hardware register if they may be both live at the 
same time.

.



Department of Computer Sciences

How many hardware registers are needed?

• Even for a single assignment statement with 
an arbitrarily long right-hand expression, we 
can’t find a bound on the number of registers 
required to store the intermediate results

• This can be easily proved by mathematical 
induction applied to an arbitrarily deep binary 
operation tree:
– For an n-deep binary tree, we need n registers, in 

the worst case, to complete the computation
Purdue University is an Equal Opportunity/Equal Access institution.



Department of Computer Sciences

• The following is the definition of static liveness, which 
is conservative:
A variable is said to be live at program point p if there exist an 

execution path from p to the program exit (or the procedure 
exit if the analysis is done at procedure level) in which the 
variable may be read before it is rewritten. Otherwise, it is 
said to be dead at the point p.

• We will discuss how to analyze the liveness of 
variables, i.e. in what program points a variable 
remains live, when we cover dataflow analysis

Purdue University is an Equal Opportunity/Equal Access institution.

Live Variables



Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

Interference Graph
If two variables may be simultaneously live at 

any program point, we say they interfere 
with each other in register allocation.

We construct an interference graph to 
identify interferences between variables

– Each node represents a variable
– Each edge represents an interference 



Department of Computer Sciences

• For the next example (a function body and its flow 
graph), we first intuitively decide what are the live 
variables at each program point.

• We then draw its interference graph
– Later, we will introduce a compiler algorithm to determine the 

live variables.

• We assume that by compiler analysis, we have 
decided the variables are not aliases to each other. 
Hence we can directly allocate them to registers
– We will introduce alias analysis in later lectures

Purdue University is an Equal Opportunity/Equal Access institution.



Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

Example:



Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

• We have used liveness information to construct an 
interference graph for register allocation.

• We now discuss compiler algorithms for analyzing 
live variables.

• Recall the definition of live variables:
A variable is said to be live at program point p if there exist an 
execution path from p to the program exit (or the procedure exit 
if the analysis is done at procedure level) in which the variable 
may be read before it is rewritten. Otherwise, the variable is said 
to be dead at the point p.



Department of Computer Sciences

What does the algorithm compute?
For each basic block B, we want to determine 
• LVin(B): the set of variables live right before B
• LVout(B): the set of variables live right after B
(remember: “live” means having a potential use in the 

future)
• To compute these, we use two pieces of information 

from B:
– USE(B): is the set of variable that are used in B before they 

ever get re-written in B, i.e. having upwardly exposed uses.
– DEF(B): is the set of variables rewritten in B

Purdue University is an Equal Opportunity/Equal Access institution.



Department of Computer Sciences

Basic Equations

Purdue University is an Equal Opportunity/Equal Access institution.

•If we have n basic blocks, then we have simultaneous equations 
over 2 * n variables:  LVin(B) and LVout(B) for all B.

•Borrow the idea from numerical algorithms, we can solve this 
iteratively

•DEF(B) and USE(B) are “constants”

•Initialize all LVin and LVout variables to empty sets.



Department of Computer Sciences

• The two equations become two operators (or two 
filters) that are monotonically non-decreasing for 
each B

• The variables are bounded from above  The 
iterations must converge, reaching the “fixed point”, 
regardless of the order to apply the operators in each 
iteration

• However, some order makes the convergence faster
• In the following examples, we make B simple, to 

contain a single instruction
• Let us apply our algorithm to an example we saw 

before.
Purdue University is an Equal Opportunity/Equal Access institution.



Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

Example:



Department of Computer Sciences

Algorithm Using a Work List

• In the naïve implementation, the algorithm iterates 
over all basic blocks until all blocks see no changes.

• A better implementation uses a worklist
• Initially include all basic blocks in the worklist.
• Until the worklist becomes empty, remove a basic 

block, B, from the list and recompute LVout and LVin.
– If LVin changes, then for each predecessor, P,  of B

• If  P is not yet in the worklist, append P to the worklist

• We can redo the example using this implementation
• Worst case complexity?

Purdue University is an Equal Opportunity/Equal Access institution.



Department of Computer Sciences

• If the basic blocks contain more than a 
single instruction

• Then the liveness information within 
each basic block, B, can be easily 
computed “locally”, using information in 
LVout(B).

• We revisit the previous example, but 
create a bigger basic block than before

Purdue University is an Equal Opportunity/Equal Access institution.



Department of Computer Sciences

• Next we see another example, which is 
a segment of a function body, assuming 
we continue to compute liveness
information from the end of this program 
segment

• We build the interference graph for this 
program segment alone

Purdue University is an Equal Opportunity/Equal Access institution.



Department of Computer Sciences

Purdue University is an Equal Opportunity/Equal Access institution.

Example:



The main objective of register allocation is to change
as many memory references into register references.
This is important for two main reasons:

• Accessing an operand from a register is faster than
accessing it from the memory.

• Modern CPU hardware can easily detect dependen-
cies between register operands. Hence, parallel op-
erations and data-forwarding (in pipeline) can be ex-
ploited by the hardware.

1



Unfortunately, register allocation, as an optimization
problem, is NP-complete except in special cases (e.g.
when the targeted code segment can be represented as
an expression tree without MOVE’s).

Register allocation is one of the examples of schedul-
ing limited resources to minimize the cost (or maximize
the efficiency) of computation.

Resource scheduling problems can often be modeled
by mathematical programming, e.g. linear integer pro-
gramming. In a compiler, however, it is often desirable
to use methods which are simpler to implement in a
compiler.

2



Graph coloring is a relatively simple method which
can be used for some of the scheduling problems, e.g.
for register allocation.

To apply graph-coloring to register allocation, we first
need to construct an interference graph, as discussed
in the last chapter.

Next, we color the interference graph using K differ-
ent colors, where K is the number of registers available
for allocation. No pair of nodes which are connected by
an edge may be assigned the same color.

3



If it is impossible to color the interference graph with
the given K colors, then we will have to keep some
of the values (represented by corresponding vertices) in
the memory (for at least part of their lifetime).

The compiler should generate the code such that a
live value will either reside in a register or in a mem-
ory location. Before the program overwrites a register
which stores a still-live value, that value must be saved
to a memory location.

This is called spilling the register, and the memory
location to save the spilled value called its spill loca-

tion.

4



Coloring by Simplification

For arbitrary graphs, coloring is an NP-complete prob-
lem. On the other hand, there exists a linear-time
heuristic method (known since 19th century) which is
based on simplification of the graph described as fol-
lows:

� Until the graph is empty, find a vertex, a, whose
degree is < K. Remove a from the graph and push
it to the coloring stack. (Some people propose that
the node with the lowest degree is removed.)

� If such a vertex cannot be found before the graph
becomes empty, then the simplification fails.

5



� Otherwise, the graph can be colored in K colors
by sequentially coloring the vertices popped off the
coloring stack.

The reason the last step mentioned above works is
because:

For any vertex m whose degree is < K, if the

graph G−{m} can be colored in K colors, then so

can G.

Let us use an arbitrary graph to illustrate the simplifi-
cation scheme, and see how many colors are needed to
successfully color this graph under the scheme.

6



If the simplification scheme fails, it does not mean
that a K-coloring does not exist.

An “optimistic” scheme (used by Briggs et al, 1989,
1994) continues to remove a vertex from the graph and
push it into the coloring stack. (Which vertex to remove
depends on how we define the spilling priority.)

During the coloring phase, we might still find it pos-
sible to color the graph with K colors.

Let us use another graph to illustrate this possibility.

7



If the optimistic scheme still fails, it still does not
mean that a K-coloring does not exist. However, to
simplify the solution, we will just assume that a K-
coloring does not exist and we resort to spilling.

Any vertex that cannot be successfully colored is put
in the spilling list. We continue to color the rest of
the vertices (just to see if there exist more spilled ver-
tices). When this is done, we need to modify the code
by inserting memory load and store instructions for the
spilled values.

8



The spilling code inserted above introduces more tem-
poraries with short live ranges. We re-draw the inter-
ference graph and re-apply the coloring scheme. We
iterate until we can color the modified graph with K

colors.
Let us use Graph 11.1, with K = 4 and K = 3

respectively, to show how the scheme works.9

li
Cross-Out

li
Text Box
one of the previous graph



The Spilling Cost

When choosing a vertex in the interference graph to
spill, the compiler needs to compare the spilling priority
among the possible candidates. Such a priority depends
on the spilling cost and the degree of the vertex in the
graph. Commonly, the vertex with the lowest value of

spilling cost

degree
(1)

is considered the best candidate for spilling.

10



A vertex with a high degree in the interference graph
is considered to be a good candidate for spilling because
its spilling may yield a better chance for the remaining
vertices to be colorable.

The spilling cost of a vertex is the performance penalty
paid at run time due to the decision to spill the corre-
sponding variable to the memory. Generally speaking,
the more often a variable is referenced at run time, the
higher its spilling cost.

11



Pre-colored nodes

Register-allocation schemes discussed above assume
that all hardware registers can be used in the same way.
However, as discussed in Chapter 6, different registers
can be assigned different roles in order to make function
call/return faster:

� A number of registers may be designated to pass
function arguments.

� One or two registers may be used to return function
value(s).

� A subset of the registers may be designated as saved
by the caller and the rest designated as saved by the

12

li
Text Box
previous slides



callee.

In order to use all registers as fully as possible, in
order to reduce memory references, we want almost all
registers be eligible for register allocation, (with a few
such as fp, sp and return-address register excluded).

On the other hand, we need to retain the special roles
of different registers. To do this, we add all registers
(which participate in register allocation) to the interfer-
ence graph and add appropriate edges to reflect the spe-
cial constraints. These vertices are called pre-colored.

� At the entry of the function, the registers which are
used to pass arguments should be copied to the for-

13



mal arguments. These registers are dead after the
copying is done, until some of these registers are used
to return function result(s).

� All callee-save registers are copied to new tempo-
raries. These registers then remain dead until the
new temporaries are copied back to them at the exit
of the function. The live range of those new tempo-
raries, therefore, expand nearly the whole function.

� Any CALL instruction is assumed to define all caller-
save registers. Therefore, a variable x which is not
live across any CALL will not interfere with any call-
save registers. However, if x is live across a CALL,

14



then it interferes with all caller-save registers. On the
other hand, x will also interfere with all those new
temporaries which are copied from callee-save regis-
ters, causing one of those temporaries to spill (be-
cause their spill priority is highest). This will cause
x to be allocated to a callee-save register.

� It is meaningless to select any pre-colored vertex to
spill, so we assign the lowest spilling priority to pre-
colored vertices.

We shall show how the interference graph is generated
for the example of Program 11.8.

15

li
Text Box
in some of previous slides.



In the discussion above, register copying is introduced in
many places. It is quite possible that some of them are
unnecessary. A technique called coalescing can be used
to eliminate unnecessary copying. Since this technique
is very specialized and there are other compiler tech-
niques which can achieve the same or better effect, we
will not discuss the coalescing technique in this course.16


	Registers
	Registerslides
	Registers
	oneslide
	13register




